# 逻辑运算符

（重定向自邏輯運算符

## 基本運算符

P Q ¬P PQ PQ PQ PQ
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

## 二元邏輯聯結詞表

${\displaystyle \bot }$  P ${\displaystyle \wedge }$  ¬P
 Q 0 1 P 0 0 0 1 0 0

${\displaystyle \top }$  P ${\displaystyle \vee }$  ¬P
 Q 0 1 P 0 1 1 1 1 1

P ${\displaystyle \wedge }$  Q
P & Q
P · Q
P AND Q
P ${\displaystyle \not \rightarrow }$ ¬Q
¬P ${\displaystyle \not \leftarrow }$  Q
¬P ${\displaystyle \downarrow }$  ¬Q
 Q 0 1 P 0 0 0 1 0 1

PQ
P | Q
P NAND Q
P → ¬Q
¬PQ
¬P ∨ ¬Q
 Q 0 1 P 0 1 1 1 1 0

P ${\displaystyle \not \rightarrow }$  Q
P ${\displaystyle \not \supset }$  Q
P & ¬Q
¬PQ
¬P ${\displaystyle \not \leftarrow }$  ¬Q
 Q 0 1 P 0 0 0 1 1 0

PQ
P ${\displaystyle \supset }$  Q
P ↑ ¬Q
¬PQ
¬P ← ¬Q
 Q 0 1 P 0 1 1 1 0 1

P
 Q 0 1 P 0 0 0 1 1 1

¬P
~P
 Q 0 1 P 0 1 1 1 0 0

P ${\displaystyle \not \leftarrow }$  Q
P ${\displaystyle \not \subset }$  Q
P ↓ ¬Q
¬P & Q
¬P ${\displaystyle \not \rightarrow }$  ¬Q
 Q 0 1 P 0 0 1 1 0 0

P ${\displaystyle \leftarrow }$  Q
P ${\displaystyle \subset }$  Q
P ∨ ¬Q
¬PQ
¬P → ¬Q
 Q 0 1 P 0 1 0 1 1 1

Q
 Q 0 1 P 0 0 1 1 0 1

¬Q
~Q
 Q 0 1 P 0 1 0 1 1 0

P ${\displaystyle \not \leftrightarrow }$  Q
P ${\displaystyle \not \equiv }$  Q
P ${\displaystyle \oplus }$  Q
P XOR Q
P ↔ ¬Q
¬PQ
¬P ${\displaystyle \not \leftrightarrow }$  ¬Q
 Q 0 1 P 0 0 1 1 1 0

PQ
PQ
P XNOR Q
P IFF Q
P ${\displaystyle \not \leftrightarrow }$  ¬Q
¬P ${\displaystyle \not \leftrightarrow }$  Q
¬P ↔ ¬Q
 Q 0 1 P 0 1 0 1 0 1

PQ
P  Q
P OR Q
P ${\displaystyle \leftarrow }$  ¬Q
¬PQ
¬P ↑ ¬Q
 Q 0 1 P 0 0 1 1 1 1

PQ
P NOR Q
P ${\displaystyle \not \leftarrow }$  ¬Q
¬P ${\displaystyle \not \rightarrow }$  Q
¬P ∧ ¬Q
 Q 0 1 P 0 1 0 1 0 0