# 铁木辛柯梁理论

## 控制方程

### 准静态铁木辛柯梁

${\displaystyle u_{x}(x,y,z)=-z~\varphi (x)~;~~u_{y}(x,y,z)=0~;~~u_{z}(x,y)=w(x)}$

{\displaystyle {\begin{aligned}&{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right)=q(x,t)\\&{\frac {\mathrm {d} w}{\mathrm {d} x}}=\varphi -{\frac {1}{\kappa AG}}{\frac {\mathrm {d} }{\mathrm {d} x}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right).\end{aligned}}}

${\displaystyle {\frac {EI}{\kappa L^{2}AG}}\ll 1}$

${\displaystyle EI~{\cfrac {\mathrm {d} ^{4}w}{\mathrm {d} x^{4}}}=q(x)-{\cfrac {EI}{\kappa AG}}~{\cfrac {\mathrm {d} ^{2}q}{\mathrm {d} x^{2}}}}$

### 动态铁木辛柯梁

${\displaystyle u_{x}(x,y,z,t)=-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z,t)=w(x,t)}$

${\displaystyle \rho A{\frac {\partial ^{2}w}{\partial t^{2}}}-q(x,t)={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]}$
${\displaystyle \rho I{\frac {\partial ^{2}\varphi }{\partial t^{2}}}={\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}$

• ${\displaystyle \rho }$ 是梁材料的密度（而非线密度）；
• ${\displaystyle A}$ 是截面面积；
• ${\displaystyle E}$ 弹性模量
• ${\displaystyle G}$ 剪切模量
• ${\displaystyle I}$ 轴惯性矩
• ${\displaystyle \kappa }$ ，称作铁木辛柯剪切系数，由形状确定，通常矩形截面${\displaystyle \kappa =5/6}$
• ${\displaystyle q(x,t)}$ 是载荷分布（单位长度上的力）；
• ${\displaystyle m:=\rho A}$
• ${\displaystyle J:=\rho I}$

${\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+m~{\cfrac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {EIm}{kAG}}\right){\cfrac {\partial ^{4}w}{\partial x^{2}~\partial t^{2}}}+{\cfrac {mJ}{kAG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q(x,t)+{\cfrac {J}{kAG}}~{\cfrac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{kAG}}~{\cfrac {\partial ^{2}q}{\partial x^{2}}}}$

#### 轴向影响

${\displaystyle u_{x}(x,y,z,t)=u_{0}(x,t)-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z)=w(x,t)}$

{\displaystyle {\begin{aligned}m{\frac {\partial ^{2}w}{\partial t^{2}}}&={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)\\J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}&=N(x,t)~{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\end{aligned}}}

${\displaystyle N_{xx}(x,t)=\int _{-h}^{h}\sigma _{xx}~dz}$

${\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}}$

#### 阻尼

${\displaystyle \eta (x)~{\cfrac {\partial w}{\partial t}}}$

${\displaystyle m{\frac {\partial ^{2}w}{\partial t^{2}}}+\eta (x)~{\cfrac {\partial w}{\partial t}}={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)}$
${\displaystyle J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}=N{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}$

{\displaystyle {\begin{aligned}EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}&+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}+{\cfrac {J\eta (x)}{\kappa AG}}~{\cfrac {\partial ^{3}w}{\partial t^{3}}}\\&-{\cfrac {EI}{\kappa AG}}~{\cfrac {\partial ^{2}}{\partial x^{2}}}\left(\eta (x){\cfrac {\partial w}{\partial t}}\right)+\eta (x){\cfrac {\partial w}{\partial t}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}\end{aligned}}}

## 切变系数

${\displaystyle \int _{A}\tau dA=\kappa AG\varphi \,}$

${\displaystyle \kappa ={\cfrac {10(1+\nu )}{12+11\nu }}}$

${\displaystyle \kappa ={\cfrac {6(1+\nu )}{7+6\nu }}}$

## 参考文献

1. ^ Timoshenko, S. P., 1921, On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section, Philosophical Magazine, p. 744.
2. ^ Timoshenko, S. P., 1922, On the transverse vibrations of bars of uniform cross-section, Philosophical Magazine, p. 125.
3. ^ Timoshenko's Beam Equations. [2013-03-22]. （原始内容存档于2007-10-15）.
4. ^ Thomson, W. T., 1981, Theory of Vibration with Applications
5. ^ Rosinger, H. E. and Ritchie, I. G., 1977, On Timoshenko's correction for shear in vibrating isotropic beams, J. Phys. D: Appl. Phys., vol. 10, pp. 1461-1466.
6. ^ Stephen Timoshenko, James M. Gere. Mechanics of Materials. Van Nostrand Reinhold Co., 1972. Pages 207.
• Stephen P. Timoshenko. Schwingungsprobleme der technik. Verlag von Julius Springer. 1932.