鞍點
(重定向自鞍点)
鞍點(英語:Saddle point)指一個非局部極值點的駐點。鞍點這詞語來自於不定二次型的二維圖形,像個馬鞍:在x-軸方向往上曲,在y-軸方向往下曲。
数学描述
编辑检验
编辑检验二元实函数F(x,y)的驻点是不是鞍点的一个简单的方法,是计算函数在这个点的黑塞矩阵:如果該矩陣行列式小于0,则该点就是鞍点。例如,函数 在驻点 的黑塞矩阵是:
此矩阵有两个特征值2,-2。它的行列式小於0,因此,这个点是鞍点。然而,这个条件只是充分条件,例如,对于函数 点 是一个鞍点,但函数在原点的黑塞矩阵是零矩阵,并不小於0。
性质
编辑在一維空間裏,鞍點是駐點,也是反曲點。因為函數圖形在鞍點由凸轉凹,或由凹轉凸,鞍點不是區域性極點。
设一個只有一個變數的函數。這函數在鞍點的一次導數等於零,二次導數換正負符號·例如,函數 就有一個鞍點在原點。
设一個擁有兩個以上變數的函數。它的曲面在鞍點好像一個馬鞍,在某些方向往上曲,在其他方向往下曲。在一幅等高線圖裏,一般來說,當兩個等高線圈圈相交叉的地點,就是鞍點。例如,兩座山中間的山口就是一個鞍點。
参见
编辑参考文献
编辑- Gray,, Lawrence F.; Flanigan, Francis J.; Kazdan, Jerry L.; Frank, David H; Fristedt, Bert, Calculus two: linear and nonlinear functions, Berlin: Springer-Verlag: page 375, 1990, ISBN 0-387-97388-5
- Hilbert, David; Cohn-Vossen, Stephan, Geometry and the Imagination 2nd, New York: Chelsea, 1952, ISBN 978-0-8284-1087-8
- von Petersdorff, Tobias, Critical Points of Autonomous Systems, Differential Equations for Scientists and Engineers (Math 246 lecture notes), 2006, (原始内容存档于2007-01-03)
- Widder, D. V., Advanced calculus, New York: Dover Publications: page 128, 1989, ISBN 0-486-66103-2