坎寧安函數 又稱為皮爾遜-坎寧安函數(Pearson-Cunningham function)是英國數學家坎寧安在1908年首先研究的特殊函數,[ 1] ,定義如下[ 2] :
Cunningham function Maple animation
ω
m
,
n
(
x
)
=
e
−
x
+
π
i
(
m
/
2
−
n
)
Γ
(
1
+
n
−
m
/
2
)
U
(
m
/
2
−
n
,
1
+
m
,
x
)
.
{\displaystyle \displaystyle \omega _{m,n}(x)={\frac {e^{-x+\pi i(m/2-n)}}{\Gamma (1+n-m/2)}}U(m/2-n,1+m,x).}
其中U為特里科米函數 。
坎寧安在是在用多變數擴展的埃奇沃斯級數 ,依概率密度函數 的矩 來近似概率密度函數時用到坎寧安函數,坎寧安函數和一維或多維常系數的擴散方程 有關[ 1]
坎寧安函數是下列微分方程的解
x
X
″
+
(
x
+
1
+
m
)
X
′
+
(
n
+
1
2
m
+
1
)
X
.
{\displaystyle xX''+(x+1+m)X'+(n+{\tfrac {1}{2}}m+1)X.}
ω
m
,
n
(
x
)
=
e
x
p
(
−
x
+
(
1
/
2
∗
I
)
∗
π
∗
m
−
I
∗
π
∗
n
)
∗
Γ
(
m
)
∗
H
e
u
n
B
(
−
2
∗
m
,
0
,
2
+
4
∗
n
,
0
,
(
x
)
)
Γ
(
1
+
n
−
(
1
/
2
)
∗
m
)
∗
x
m
∗
Γ
(
(
1
/
2
)
∗
m
−
n
)
{\displaystyle \omega _{m,n}(x)={\frac {exp(-x+(1/2*I)*\pi *m-I*\pi *n)*\Gamma (m)*HeunB(-2*m,0,2+4*n,0,{\sqrt {(}}x))}{\Gamma (1+n-(1/2)*m)*x^{m}*\Gamma ((1/2)*m-n)}}}
+
e
x
p
(
−
x
+
(
1
/
2
∗
I
)
∗
P
i
∗
m
−
I
∗
π
∗
n
)
∗
Γ
(
−
m
)
∗
H
e
u
n
B
(
2
∗
m
,
0
,
2
+
4
∗
n
,
0
,
(
x
)
)
Γ
(
1
+
n
−
(
1
/
2
)
∗
m
)
∗
Γ
(
−
(
1
/
2
)
∗
m
−
n
)
{\displaystyle +{\frac {exp(-x+(1/2*I)*Pi*m-I*\pi *n)*\Gamma (-m)*HeunB(2*m,0,2+4*n,0,{\sqrt {(}}x))}{\Gamma (1+n-(1/2)*m)*\Gamma (-(1/2)*m-n)}}}
ω
m
,
n
=
W
h
i
t
t
a
k
e
r
M
(
0
,
−
1
/
2
,
−
x
+
I
∗
π
∗
(
(
1
/
2
)
∗
m
−
n
)
)
∗
e
x
p
(
−
(
1
/
2
)
∗
x
+
(
1
/
2
∗
I
)
∗
π
∗
(
(
1
/
2
)
∗
m
−
n
)
)
∗
W
h
i
t
t
a
k
e
r
W
(
1
/
2
+
n
,
(
1
/
2
)
∗
m
,
x
)
∗
e
x
p
(
(
1
/
2
)
∗
x
)
Γ
(
1
+
n
−
(
1
/
2
)
∗
m
)
∗
x
(
1
/
2
+
(
1
/
2
)
∗
m
)
{\displaystyle \omega _{m,n}={\frac {WhittakerM(0,-1/2,-x+I*\pi *((1/2)*m-n))*exp(-(1/2)*x+(1/2*I)*\pi *((1/2)*m-n))*WhittakerW(1/2+n,(1/2)*m,x)*exp((1/2)*x)}{\Gamma (1+n-(1/2)*m)*x^{(1/2+(1/2)*m)}}}}
ω
0.5
,
0.5
(
x
)
=
(
1
/
80640
)
∗
(
120960
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
(
x
)
−
141120
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
3
/
2
)
+
77616
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
5
/
2
)
−
27720
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
7
/
2
)
+
7315
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
9
/
2
)
+
(
141120
∗
I
)
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
3
/
2
)
+
(
27720
∗
I
)
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
7
/
2
)
−
(
100800
∗
I
)
∗
π
∗
x
−
(
7315
∗
I
)
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
9
/
2
)
−
(
77616
∗
I
)
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
x
(
5
/
2
)
−
40320
∗
π
+
(
75600
∗
I
)
∗
π
∗
x
2
+
100800
∗
π
∗
x
+
(
40320
∗
I
)
∗
π
−
75600
∗
π
∗
x
2
−
(
120960
∗
I
)
∗
(
2
)
∗
Γ
(
3
/
4
)
2
∗
(
x
)
+
32760
∗
π
∗
x
3
−
(
32760
∗
I
)
∗
π
∗
x
3
−
9945
∗
π
∗
x
4
+
(
9945
∗
I
)
∗
π
∗
x
4
+
80640
∗
π
(
3
/
2
)
∗
O
(
x
(
9
/
2
)
)
∗
(
x
)
)
/
(
π
(
3
/
2
)
∗
(
x
)
)
{\displaystyle \omega _{0.5,0.5}(x)={(1/80640)*(120960*{\sqrt {(}}2)*\Gamma (3/4)^{2}*{\sqrt {(}}x)-141120*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}3/2)+77616*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}5/2)-27720*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}7/2)+7315*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}9/2)+(141120*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}3/2)+(27720*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}7/2)-(100800*I)*\pi *x-(7315*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}9/2)-(77616*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}5/2)-40320*\pi +(75600*I)*\pi *x^{2}+100800*\pi *x+(40320*I)*\pi -75600*\pi *x^{2}-(120960*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*{\sqrt {(}}x)+32760*\pi *x^{3}-(32760*I)*\pi *x^{3}-9945*\pi *x^{4}+(9945*I)*\pi *x^{4}+80640*\pi ^{(}3/2)*O(x^{(}9/2))*{\sqrt {(}}x))/(\pi ^{(}3/2)*{\sqrt {(}}x))}}
^ 1.0 1.1 Cunningham (1908)
^ Cunningham, E. (1908), "The ω-Functions, a Class of Normal Functions Occurring in Statistics", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society) 81 (548): 310–331, doi:10.1098/rspa.1908.0085, ISSN 0950-1207, JSTOR 93061
Cunningham, E., The ω-Functions, a Class of Normal Functions Occurring in Statistics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society), 1908, 81 (548): 310–331, ISSN 0950-1207 , JSTOR 93061 , doi:10.1098/rspa.1908.0085