电荷共轭宇称

数学形式

${\displaystyle {\mathcal {C}}\,|\psi \rangle =|{\bar {\psi }}\rangle }$

${\displaystyle 1=\langle \psi |\psi \rangle =\langle {\bar {\psi }}|{\bar {\psi }}\rangle =\langle \psi |{\mathcal {C}}^{\dagger }{\mathcal {C}}|\psi \rangle }$

${\displaystyle {\mathcal {C}}{\mathcal {C}}^{\dagger }=\mathbf {1} }$

${\displaystyle {\mathcal {C}}^{2}|\psi \rangle ={\mathcal {C}}|{\bar {\psi }}\rangle =|\psi \rangle }$

${\displaystyle {\mathcal {C}}^{2}=\mathbf {1} }$
${\displaystyle {\mathcal {C}}={\mathcal {C}}^{-1}}$

${\displaystyle {\mathcal {C}}={\mathcal {C}}^{\dagger },}$

本征值与本征态

${\displaystyle {\mathcal {C}}\,|\psi \rangle =\eta _{C}\,|\psi \rangle }$

${\displaystyle {\mathcal {C}}^{2}|\psi \rangle =\eta _{C}{\mathcal {C}}|{\psi }\rangle =\eta _{C}^{2}|\psi \rangle =|\psi \rangle }$

电荷共轭宇称守恒的实验验证

• ${\displaystyle \pi ^{0}\rightarrow 2\gamma }$ ：观测到中性π介子${\displaystyle \pi ^{0}}$ 会衰变为双光子γ+γ，因此我们可认定π介子有${\displaystyle \eta _{C}=(-1)^{2}=1}$ 的性质。然而，每增加一个γ会在π介子的电荷共轭宇称中引入一个-1的因子；衰变成3γ则会违反电荷共轭宇称守恒。过去曾进行了此种衰变的实验验证[1]，其中应用到产生π介子的反应过程：${\displaystyle \pi ^{-}+p\rightarrow \pi ^{0}+n}$
• ${\displaystyle \eta \rightarrow \pi ^{+}\pi ^{-}\pi ^{0}}$ [2]η介子英语Eta meson的衰变。
• ${\displaystyle p{\bar {p}}}$ 湮灭[3]

参考文献

1. ^ MacDonough, J.; et al. Phys. Review. 1988, D38: 2121. 缺少或|title=为空 (帮助)
2. ^ Gormley, M.; et al. Phys. Rev. Lett. 1968, 21: 402. Bibcode:1968PhRvL..21..402G. doi:10.1103/PhysRevLett.21.402. 缺少或|title=为空 (帮助)
3. ^ Baltay, C; et al. Phys. Rev. Lett. 1965, 14: 591. Bibcode:1965PhRvL..14..591R. doi:10.1103/PhysRevLett.14.591. 缺少或|title=为空 (帮助)