差分进化算法
差分进化算法(英語:differential evolution)又称微分进化算法,是一种求解最佳化问题的进化算法。因為进化算法對於最佳化问题的要求極少,所以被視為一種後設启发式算法。雖然後設启发式算法適用於多種最佳化问题,但是並不保證可以找到全局最優解。
差分进化算法被使用在多維度實數編碼的最佳化问题。因為此算法不使用問題的梯度資訊,故可解不可微分的最佳化问题。也因此,差分进化算法可用於不連續的,雜訊的,隨著時間改變的最佳化问题。
差分进化算法類似遗传算法,包含变异,交叉操作,淘汰机制。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法[1]。而差分进化算法与遗传算法不同之處,在於变异的部分是隨選兩個解成員變數的差異,經過伸縮後加入當前解成員的變數上,因此差分进化算法無須使用機率分佈產生下一代解成員 [2]。
算法的原理采用对个体进行方向扰动,以达到对个体的函数值进行下降的目的,同其他进化算法一样,差分进化算法不利用函数的梯度信息,因此对函数的可导性甚至连续性没有要求,适用性很强。同时,算法与粒子群优化有相通之处,但因为差分进化算法在一定程度上考虑了多变量间的相关性,因此相较于粒子群优化在变量耦合问题上有很大的优势。由于差分进化算法在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。算法的实现参考实现代码部分[3]
歷史
编辑演算法原理
编辑差分進化演算法之目的為求解最佳化問題,使用突變、交叉、選擇計算以演化多個可能的解。首先,產生足量的隨機變數,做為初始的可能解。接著,依序進行突變、交叉、選擇計算,做完一輪後,檢查某個終止條件。若終止條件尚未滿足,則回到突變、交叉、選擇計算,否則終止差分進化演算法,輸出最後一輪的最佳解。
突變
编辑在進化計算中,突變是用於產生隨機解的計算方法。
交叉
编辑在突變之後,差分進化演算法使用交叉計算以增強隨機解的多樣性。
選擇
编辑在交叉之後,差分進化演算法對隨機解做選擇,移除演化失敗的解,留下演化成功的解。選擇之後,進行突變計算,直到滿足某個終止條件。
实现代码(MATLAB)
编辑tic
F = 0.9;
CR = .1;
n = 2; %问题维数,以简单的球函数为目标函数
NP = 30;
lu = [-10,-10 ;10 ,10]; %求解空间的上下界
LB = repmat(lu(1,:),NP,1);
UB = repmat(lu(2,:),NP,1);
%用于生成随机选择个体的表
tab = 1:NP; tab = tab(ones(1,NP),:)';
dig = 1:NP; D =(dig-1)*NP +(1:NP);
tab (D) = [];
tab = reshape(tab,NP-1,[])';
TAB = tab;
%测试次数
TIMES = 10;
Solve = zeros(1,TIMES);
numOfevol = zeros(1,TIMES);
for time = 1:TIMES
%
Result = []; %记录结果
rand('seed',sum(100*clock));
%
X = LB+rand(NP,n).*(UB-LB);
U = X;
%%
fit = fitness (X); %首次评价
FES = NP;
while FES<n*10000
%产生随机个体参与变异
tab = TAB;
rand1 = floor(rand(NP,1)*(NP-1))+1;
rand2 = floor(rand(NP,1)*(NP-2))+2;
rand3 = floor(rand(NP,1)*(NP-3))+3;
RND1 =(rand1-1)*NP+(1:NP)';
RND2 =(rand2-1)*NP+(1:NP)';
RND3 =(rand3-1)*NP+(1:NP)';
r1 = tab (RND1); tab (RND1)=tab(:,1);
r2 = tab (RND2); tab (RND2)=tab(:,2);
r3 = tab (RND3);
% rand/one/变异模式
V = X(r1,:) + F.*(X(r2,:)-X(r3,:));
%越界检验
BL = V<LB ; V(BL) = 2*LB(BL) - V(BL);
BLU = V(BL)>UB(BL); BL (BL) = BLU ; V(BL) = UB (BL);
BU = V>UB; V (BU) = 2*UB(BU) - V(BU);
BUL = V(BU)<LB(BU); BU (BU) = BUL ; V(BU) = LB (BU);
%交叉操作
J_= mod(floor(rand(NP,1)*n),n)+1;
J =(J_-1)*NP+(1:NP)';
C = rand(NP,n)<CR;
U (J) = V(J);
U (C) = V(C);
%评价子代
fit_ = fitness (U);
%比较并竞争
S = fit_<fit;
X(S,:) = U(S,:);
fit(S) = fit_(S);
%记录函数评价次数
FES = FES + NP;
%记录结果(用于绘图,并不是算法必要环节)
Result = [Result ,min (fit)];
end
Solve (time) = min (fit);
%试验次数
plot(log10(Result),'b');hold on;
end
disp(['求解结果:',num2str(Solve)]);
toc
%附上球函数代码(新建一个M文件即可)
function Y = fitness (X)
Y = sum(X.^2 ,2);
参看
编辑参考文献
编辑- ^ 刘波,王凌,金以慧差分进化算法研究进展,控制与决策,第22卷第7期,721-729
- ^ S. Das; P. N. Suganthan. Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation. Feb. 2011, 15 (1): 4–31 [2019-02-12]. doi:10.1109/TEVC.2010.2059031. (原始内容存档于2021-03-08).
- ^ 代码编写及提供者:rongekuta@gmail.com
- ^ R. Storn; K. Price. Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, ICSI, March 1995. [2019-02-12]. (原始内容存档于2020-06-09).
- ^ R. Storn; K. Price. Minimizing the real functions of the ICEC'96 contest by differential evolution. Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan: 842–844. 20-22 May 1996 [2019-02-12]. doi:10.1109/ICEC.1996.542711. (原始内容存档于2019-02-13).
- ^ R. Storn; K. Price. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization. Dec. 1997, 11 (4): 341–359 [2019-02-12]. doi:10.1023/A:1008202821328. (原始内容存档于2021-03-08).
- ^ Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization. Springer. 2005. ISBN 978-3-540-20950-8.
外部链接
编辑- Storn's Homepage on DE featuring source-code for several programming languages.
- SwarmOps Parameter tuning / calibration of DE and other optimization methods using a Meta-Optimization approach. Source-code library is for the C and C# programming languages.
- Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions(webng.com)– FORTRAN 77 Codes for DE optimization with a large number of benchmark problems
- Differential Evolution and Particle Swarm Optimization(webng.com)– Performance Evaluation on Benchmark functions
- List of References on Constraint-Handling Techniques used with Evolutionary Algorithms(cs.cinvestav.mx) (页面存档备份,存于互联网档案馆)– Comprehensive bibliography of constraint methods for evolutionary optimization
- Differential Evolution(MathWorld.wolfram.com) (页面存档备份,存于互联网档案馆)
- A SPICE Circuit Optimizer(sourceforge.net) (页面存档备份,存于互联网档案馆)– Parallel version of the Differential Evolution
- A forthcoming special issue on DE organized by IEEE Transactions on Evolutionary Computation (页面存档备份,存于互联网档案馆)
- GenerationZ (页面存档备份,存于互联网档案馆) – A multi-threaded differential evolution library
- A Fast Differential Evolution Algorithm using k-Nearest Neighbour Predictor