打开主菜单

抽象代数中,一个换位子群导群,是指由这个群的所有交换子所生成的子群,记作[G,G]、G′G(1) 。每个群都对应着一个确定的交换子群。在一个群G的所有正规子群中,交换子群G′是使得G对它的商群交换群的最小子群。在某种意义上,交换子群提供了群G的可交换程度。因为从交换子的定义: ,如果x与y交换,那么[x,y]=e。一个群内可交换的元素越多,交换子就越少,交换子群也就越小。可交换群的交换子群为平凡群{e}。

定义编辑

给定一个群GG的交换子群或导群: [G,G]、G′G(1)G的所有交换子所生成的子群:

 


类似地可以定义高阶的导群。

 
 

可以证明,如果存在自然数 n 使得   ,那么G可解群

商群 是一个阿贝尔群,叫做G阿贝尔化子群,通常记作GabG的阿贝尔化子群就是G的一阶同调群。

 的群叫做完美群,这是与阿贝尔群相对的概念。完美群的阿贝尔化子群是单位群{e}。

性质编辑

  1.   正规子群
  2. G对于自同构稳定: 
  3. 如果H是G的子群,那么 
  4.  是一个满同态,那么 
  5. 如果H是G的正规子群,那么 交换群,当且仅当 
    证明: 是一个满同态,
    所以, 是交换群
     
     
  6.  ,所以  可交换。

交换子群的例子编辑

参见编辑