单位根
出自复变函数的一个定义
数学上,次單位根是次冪為1的複數。它們位於复平面的单位圆上,構成正多边形的頂點,但最多只可有兩個頂點同時標在實數線上。

定义 编辑
这方程的複數根 為 次單位根。
單位的 次根有 個:
- 。
本原根 编辑
單位的 次根以乘法構成 階循環群。它的生成元是 次本原單位根。 次本原單位根是 ,其中 和 互質。 次本原單位根數目為歐拉函數 。 全体i次单位根对普通乘法作成群,即i次单位根群。所有全体i次单位根群在普通乘法下也可作成群,且这是一个无限交换群,这个无限交换群里的每个元素的阶都有限。
例子 编辑
一次單位根有一個: 。
二次單位根有兩個: 和 ,只有 是本原根。
其中 是虚數單位;除 外都是本原根。
四次單位根是
其中 和 是本原根。
和式 编辑
當 不小於 时, 次單位根總和為 。這一結果可以用不同的方法證明。一個基本方法是等比級數:
- 。
第二個證法是它們在複平面上構成正多邊形的頂點,而從對稱性知這多邊形的重心在原點。
還有一個證法利用關於方程根與係數的韋達定理,由分圓方程的 項係數為零得出。