打开主菜单

摩尔-彭若斯广义逆

摩尔-彭若斯广义逆 A+(Moore–Penrose pseudoinverse)是最著名的广义逆阵,也是该词的通俗意思。

1903年,埃里克伊姆(Erik Ivar Fredholm)提出积分算子的伪逆的概念。摩尔-彭若斯广义逆先后被以利亚金·黑斯廷斯·摩尔(Eliakim Hastings Moore)(1920年)[1]阿恩·布耶哈马(Arne Bjerhammar)(1951年) [2]罗杰·彭罗斯(1955年)[3]发现或描述。

它常被用于求得或简化非一致线性方程组的最小范数最小二乘解(最小二乘法)。

矩阵的摩尔-彭若斯广义逆在实数域和复数域上都是唯一的,并且可以通过奇异值分解求得。

目录

定义编辑

定义一

PS表示到向量空间S上的正交投影。对于任意一个m乘n的复矩阵A,设R(A)表示A的值域空间。摩尔于1935年证明矩阵A的广义逆矩阵G必须满足的条件:

 

以上两个条件称为摩尔条件。满足摩尔条件的矩阵G称为矩阵A的摩尔逆矩阵。


定义二

彭若斯于1955年提出了定义广义逆矩阵的另外一组条件[3]

  1.   不一定是单位矩阵,但却不会改变 的列向量。
  2.   是乘法半群弱逆
  3.   埃尔米特矩阵
  4.   也是埃尔米特矩阵

以上四个条件常称摩尔-彭若斯条件。满足全部四个条件的矩阵G,就称为A的摩尔-彭若斯广义逆矩阵,记作A+

性质编辑

从摩尔-彭若斯条件出发,彭若斯推导出了摩尔-彭若斯广义逆的一些性质[3]

  •  
  •  
  •  
  •     都是幂等矩阵。

参考编辑

书籍编辑

  • 张贤达. 矩阵分析与应用. 北京: 清华大学出版社. 2004年9月: 85–99. ISBN 7-302-09271-0 (中文). 

文献编辑

  1. ^ Moore, E. H. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society. 1920, 26 (9): 394–395. doi:10.1090/S0002-9904-1920-03322-7. 
  2. ^ Bjerhammar, Arne. Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm. 1951, 49. 
  3. ^ 3.0 3.1 3.2 Penrose, Roger. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 1955, 51: 406–413. doi:10.1017/S0305004100030401.