機率流

定義

${\displaystyle \mathbf {J} \ {\stackrel {def}{=}}\ {\frac {\hbar }{2mi}}\left(\Psi ^{*}{\boldsymbol {\nabla }}\Psi -\Psi {\boldsymbol {\nabla }}\Psi ^{*}\right)={\frac {\hbar }{m}}{\mbox{Im}}(\Psi ^{*}{\boldsymbol {\nabla }}\Psi )}$

連續方程式與機率保守定律

${\displaystyle {\frac {\partial \rho }{\partial t}}+{\boldsymbol {\nabla }}\cdot \mathbf {J} =0}$

${\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{\mathbb {V} }|\Psi |^{2}\mathrm {d} ^{3}{r}+\oint _{\mathbb {S} }\mathbf {J} \cdot {\mathrm {d} \mathbf {a} }=0}$ (1)

連續方程式導引

${\displaystyle P=\int _{\mathbb {V} }\rho \,\mathrm {d} ^{3}\mathbf {r} =\int _{\mathbb {V} }|\Psi |^{2}\,\mathrm {d} ^{3}\mathbf {r} }$

${\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} t}}={\frac {\mathrm {d} }{\mathrm {d} t}}\int _{\mathbb {V} }|\Psi |^{2}\,\mathrm {d} ^{3}{r}=\int _{\mathbb {V} }\left({\frac {\partial \Psi }{\partial t}}\Psi ^{*}+\Psi {\frac {\partial \Psi ^{*}}{\partial t}}\right)\,\mathrm {d} ^{3}{r}}$ (2)

${\displaystyle i\hbar {\frac {\partial \Psi }{\partial t}}={\frac {-\hbar ^{2}}{2m}}\nabla ^{2}\Psi +U\Psi }$

${\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} t}}=-\int _{\mathbb {V} }{\frac {\hbar }{2mi}}\left(\Psi ^{*}\nabla ^{2}\Psi -\Psi \nabla ^{2}\Psi ^{*}\right)\,\mathrm {d} ^{3}{r}}$

${\displaystyle {\boldsymbol {\nabla }}\cdot \left(\Psi ^{*}{\boldsymbol {\nabla }}\Psi -\Psi {\boldsymbol {\nabla }}\Psi ^{*}\right)={\boldsymbol {\nabla }}\Psi ^{*}\cdot {\boldsymbol {\nabla }}\Psi +\Psi ^{*}\nabla ^{2}\Psi -{\boldsymbol {\nabla }}\Psi \cdot {\boldsymbol {\nabla }}\Psi ^{*}-\Psi \nabla ^{2}\Psi ^{*}}$

${\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} t}}=-\int _{\mathbb {V} }{\boldsymbol {\nabla }}\cdot \left[{\frac {\hbar }{2mi}}\left(\Psi ^{*}{\boldsymbol {\nabla }}\Psi -\Psi {\boldsymbol {\nabla }}\Psi ^{*}\right)\right]\,\mathrm {d} ^{3}{r}}$

${\displaystyle \int _{\mathbb {V} }{\frac {\partial \rho }{\partial t}}\,\mathrm {d} ^{3}{r}=-\int _{\mathbb {V} }\left({\boldsymbol {\nabla }}\cdot \mathbf {J} \right)\,\mathrm {d} ^{3}{r}}$

${\displaystyle {\frac {\partial \rho }{\partial t}}+{\boldsymbol {\nabla }}\cdot \mathbf {J} =0}$

範例

平面波

${\displaystyle \Psi (\mathbf {r} ,\,t)=Ae^{i\mathbf {k} \cdot \mathbf {r} }e^{i\omega t}}$

${\displaystyle \Psi }$  的機率流是

${\displaystyle \mathbf {J} ={\frac {\hbar }{2mi}}|A|^{2}\left(e^{-i\mathbf {k} \cdot \mathbf {r} }{\boldsymbol {\nabla }}e^{i\mathbf {k} \cdot \mathbf {r} }-e^{i\mathbf {k} \cdot \mathbf {r} }{\boldsymbol {\nabla }}e^{-i\mathbf {k} \cdot \mathbf {r} }\right)=|A|^{2}{\frac {\hbar \mathbf {k} }{m}}}$

盒中粒子

${\displaystyle \Psi _{n}={\sqrt {\frac {2}{L}}}\sin \left({\frac {n\pi }{L}}x\right),\qquad 0\leq x\leq L}$

${\displaystyle J_{n}={\frac {\hbar }{2mi}}\left(\Psi _{n}^{*}{\frac {\partial \Psi _{n}}{\partial x}}-\Psi _{n}{\frac {\partial \Psi _{n}^{*}}{\partial x}}\right)=0}$