石炭纪

石炭纪
358.9–298.9百万年前
Scotese 300 ma.png

晚石炭世:3亿年前的地球

全時期平均大氣O2含量 约32.3 Vol %[1]
(为現代的162% )
全時期平均大氣CO2含量 约800 ppm[2]
(为前工業時期3倍)
全時期平均地表溫度 约14℃[3]
(高於現代0℃)
海平面(高於現代) 從120米降至現代水平,在末期穩定上升至80米[4]
石炭纪主要分界
-360 —
-355 —
-350 —
-345 —
-340 —
-335 —
-330 —
-325 —
-320 —
-315 —
-310 —
-305 —
-300 —
-295 —
石炭纪时间表
直轴:百万年前

石炭纪(英語:Carboniferous,符號C)是地球历史中的一个地质时代。早在1822年石炭纪在英国就已经被看作是一个地质时代中的纪了。石炭纪的名字来自于石炭纪时期在全世界各地形成的。它从3.59亿年前开始,延续到2.99亿年前。它与二叠纪泥盆纪之间的边界的年代主要是通过放射性同位素断代获得的。

对石炭纪的内部分类各个地区使用非常不同的系统,这些不同的系统在其使用地区和传统中却相当稳定。在西欧石炭纪一般被分为上下两个亚纪,在美国分密西西比纪宾夕法尼亚纪,在俄罗斯分上中下三个亚纪。古生物学上的细节划分一般使用海生动物:䗴类头足类腕足动物珊瑚等。陆地植物也被用来对晚石炭世作细节划分。

古生物编辑

植物编辑

石炭纪,尤其是石炭纪晚期可以被称为是蕨类植物的时代。蕨类植物森林的规模可以从今天石煤层的规模中看出来端倪。这些在今天成为石煤的植物当中最主要的是:

演化事件编辑

动物编辑

海生动物编辑

泥盆纪海中占支配作用的盾皮鱼类泥盆紀後期滅絕事件后再也没有出现过。石炭纪海中的鱼类主要是活动灵便的软骨鱼类辐鳍鱼类。尤其是软骨鱼类,占据了海中的支配地位,石炭纪的软骨鱼类多样性远高于中生代时期的软骨鱼类

出现了新兴的䗴类,是单细胞生物,但它们可以达到10厘米大。菊石海百合繁盛。三叶虫到石炭纪已经大部分绝灭,只剩下几个属种。

陆地动物编辑

最早的无翼的昆虫中泥盆世就出现了,到晚石炭世时,有翼的昆虫出现。石炭統煤系地層中發現超過500種的昆蟲。

在陆地和淡水生活的脊椎动物主要是肉鳍鱼类离片椎类、非羊膜爬行形类,它们还保存着相当的水生习性。由于它们在陆地上还没有竞争对手,因此它们的种类非常多,有些一直大到6米长。

演化事件编辑

古地理编辑

 
晚石炭世时期的地球

出发点编辑

在泥盆纪中北美地块和北欧-俄罗斯地块结合到一起。这块大陆与后来的冈瓦那大陆的其它部分(今天的非洲南美洲南极洲澳大利亚印度)之间部分是由不同的地形组成的海洋。在泥盆纪晚期这些地区与北美-北欧-俄罗斯组成的大陆已开始有接触。

石炭纪的发展编辑

石炭纪内这个过程继续发展,到早石炭世晚石炭世交界的时期这个过程达到一个高潮。直到石炭纪晚期非洲西北部与北美之间的空隙才被填补。阿巴拉契亚山脉的造山运动完成。西伯利亚与俄罗斯也已经基本相接,乌拉尔山脉形成,盤古大陸基本形成。

气候编辑

石炭纪开始时非洲的南角位于地球的南极。石炭纪中冈瓦那大陆按顺时钟方向旋转,到二叠纪时南极洲位于南极。石炭纪开始后气温下降,在石炭纪早期就已经有冰川形成,但到石炭纪/二叠纪间期冰川发展到了高潮期。在冈瓦那大陆到处都可以找到冰川的痕迹。地质分析证明在石炭纪中气温比较温暖的时期与气温比较寒冷的时期不断交替。石炭纪晚期的大量煤的沉积可能与海面的不断上下波动。这个波动可能是由于冈瓦那大陆南部冰川的融化和延长而造成的。

相關影視作品编辑

参考文献编辑

  1. ^ http://uahost.uantwerpen.be/funmorph/raoul/fylsyst/Berner2006.pdf
  2. ^ Image:Phanerozoic Carbon Dioxide.png
  3. ^ Image:All palaeotemps.png
  4. ^ Haq, B. U.; Schutter, SR. A Chronology of Paleozoic Sea-Level Changes. Science. 2008, 322 (5898): 64–68. Bibcode:2008Sci...322...64H. PMID 18832639. doi:10.1126/science.1161648. 
  5. ^ Pšenička, J.; Opluštil, S. The epiphytic plants in the fossil record and its example from in situ tuff from Pennsylvanian of Radnice Basin (Czech Republic).. Bulletin of Geosciences. 2013-06-07: 401–416. ISSN 1802-8225. doi:10.3140/bull.geosci.1376. 
  6. ^ Bashforth, A.R.; Zodrow, E.L. Partial reconstruction and palaeoecology of Sphenophyllum costae (Middle Pennsylvanian, Nova Scotia, Canada). Bulletin of Geosciences. 2007-12-31: 365–382. ISSN 1802-8225. doi:10.3140/bull.geosci.2007.04.365. 
  7. ^ Krings, Michael; Kerp, Hans; Taylor, Thomas N.; Taylor, Edith L. [0204:hpvalg2.0.co;2 How Paleozoic Vines and Lianas Got off the Ground: On Scrambling and Climbing Carboniferous–Early Permian Pteridosperms]. The Botanical Review. 2003-04, 69 (2): 204–224. ISSN 0006-8101. doi:10.1663/0006-8101(2003)069[0204:hpvalg]2.0.co;2. 
  8. ^ Grimaldi, D. Pushing Back Amber Production. Science. 2009-10-01, 326 (5949): 51–52. ISSN 0036-8075. doi:10.1126/science.1179328. 
  9. ^ Labandeira, C. C.; Phillips, T. L. A Carboniferous insect gall: insight into early ecologic history of the Holometabola.. Proceedings of the National Academy of Sciences. 1996-08-06, 93 (16): 8470–8474. ISSN 0027-8424. doi:10.1073/pnas.93.16.8470. 
  10. ^ FISCHER, J. & KOGAN, I. (2008): Elasmobranch egg capsules Palaeoxyris, Fayolia and Vetacapsula as subject of palaeontological research – an annotated bibliography. – Paläontologie, Stratigraphie, Fazies (16), Freiberger Forschungshefte, C 528: 75–91
  11. ^ Ó Gogáin, Aodhán; Falcon-Lang, Howard J.; Carpenter, David K.; Miller, Randall F.; Benton, Michael J.; Pufahl, Peir K.; Ruta, Marcello; Davies, Thomas G.; Hinds, Steven J. Johanson, Zerina, 编. Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications. Palaeontology. 2016-09, 59 (5): 689–724. doi:10.1111/pala.12249 (英语). 
  12. ^ Limnoscelis - Facts and Pictures. Dinosaurs - Pictures and Facts. 2016-10-12 [2020-02-21]. (原始内容存档于2020-04-06) (美国英语).