窄帶隙半導體

窄帶隙半導體是指帶隙小於0.5 eV,或紅外吸收截止波長超過2.5微米的半導體材料。更廣義的定義包括帶隙小於(1.1 eV)的所有半導體。[1] [2] 現代太赫茲[3]紅外[4]熱成像[5] 技術均基於此類半導體。

窄帶隙材料應用於紅外探測器和紅外領域,以實現衛星遙感[6]、遠程通訊的光子集成電路[7] [8] [9]無人駕駛車輛的Li-Fi系統[10] [11] [12] [13]。這種半導體材料也是太赫技術的材料基礎,其應用包括探測隱藏武器安全監視系統[14] [15] [16]太赫茲斷層掃描的安全醫療和工業成像系統 [17] [18] [19],以及介電尾場加速器[20] [21] [22]。 此外,嵌入窄帶隙半導體的熱光伏英語Thermophotovoltaic energy conversion 發電可講傳統太陽能發電系統中浪費的部分能量轉化為可用電能,該部分能量佔據了太陽光譜的49%左右[23] [24]。 航天和深海應用,以及真空物理裝置中,常使用窄帶隙半導體來實現超低溫冷卻[25] [26]

在尖端研發中,窄帶隙半導體被製成納米材料,其強烈的電子空穴耦合會與增加的量子限制效應相互作用[27],這給描述和設計帶來了特殊的挑戰。麻省理工學院蘭克斯提出的「蘭克斯模型」擴展了k·p 方法來解決電子能帶邊緣的非拋物線性問題,但又缺乏精確性[28]。 使用超級計算機利用密度泛函理論進行第一性原理計算,雖然可以得到更精確的能帶曲率,但其對算力和算時的要求都太大。 唐爽崔瑟豪斯夫人提出的「唐-崔瑟豪斯理論[29] [30] 引入了一種低維多帶迭代法,以漸進式方法解決了這個問題,並得到了通用汽車的數據支持。[31] [32]

2012年4月12日,麻省理工學院官網以封面新聞報道唐爽崔瑟豪斯提出的「唐-德雷塞爾豪斯理論」,該理論提出了低維多帶迭代法。

窄帶隙半導體列表 編輯

材料 化學式 能隙 (300 K)
碲化汞鎘英語Mercury cadmium telluride Hg1−xCdxTe II-VI 0 to 1.5 eV
碲化汞鋅英語Mercury zinc telluride Hg1−xZnxTe II-VI 0.15 to 2.25 eV
硒化鉛 PbSe IV-VI 0.27 eV
硫化鉛 PbS IV-VI 0.37 eV
碲化鉛 PbTe IV-VI 0.32 eV
砷化銦 InAs III-V 0.354 eV
銻化銦 InSb III-V 0.17 eV
銻化鎵 GaSb III-V 0.67 eV
砷化鎘 Cd3As2 II-V 0.5 to 0.6 eV
碲化鉍 Bi2Te3 0.21 eV
碲化亞錫 SnTe IV-VI 0.18 eV
硒化亞錫 SnSe IV-VI 0.9 eV
硒化銀 Ag2Se 0.07 eV
矽化鎂 Mg2Si II-IV 0.79 eV[33]

相關條目 編輯

參考 編輯

  1. ^ Li, Xiao-Hui. Narrwo-Bandgap Materials for Optoelectronics Applications. Frontiers of Physics. 2022, 17: 13304 [2023-08-04]. doi:10.1007/s11467-021-1055-z. (原始內容存檔於2023-08-04). 
  2. ^ Chu, Junhao; Sher, Arden. Physics and Properties of Narrow Gap Semiconductors. Springer. [2023-08-04]. ISBN 9780387747439. (原始內容存檔於2023-08-04). 
  3. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. National Association of Broadcasters Engineering Handbook. Taylor and Francis. 2007: 7 [2023-08-04]. ISBN 978-1-136-03410-7. (原始內容存檔於2023-08-04). 
  4. ^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS. Micromachines. 2022, 13 (5). doi:10.3390/mi13050703 . 
  5. ^ Hapke B. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. 19 January 2012: 416. ISBN 978-0-521-88349-8. 
  6. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. ^ Inside Telecom Staff. How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?. Inside Telecom. 30 July 2022 [20 September 2022]. (原始內容存檔於2023-06-11). 
  8. ^ Awad, Ehab. Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides. IEEE Access. October 2018, 6 (1): 55937. S2CID 53043619. doi:10.1109/ACCESS.2018.2873278 . 
  9. ^ Vergyris, Panagiotis. Integrated photonics for quantum applications. Laser Focus World. 16 June 2022 [20 September 2022]. (原始內容存檔於2022-11-28). 
  10. ^ Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research. www.lifi.eng.ed.ac.uk. [2018-01-16]. (原始內容存檔於2023-09-13). 
  11. ^ The Infrared Array Camera (IRAC). Spitzer Space Telescope. NASA / JPL / Caltech. [13 January 2017]. (原始內容存檔於13 June 2010). 
  12. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始內容存檔於2023-08-04). 
  13. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始內容存檔於2023-08-04). 
  14. ^ "Space in Images – 2002 – 06 – Meeting the team"頁面存檔備份,存於互聯網檔案館).
  15. ^ Space camera blazes new terahertz trails頁面存檔備份,存於互聯網檔案館). timeshighereducation.co.uk. 14 February 2003.
  16. ^ Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004. epsrc.ac.uk. 27 February 2004
  17. ^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. Journal of Infrared, Millimeter, and Terahertz Waves. 2014, 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173 . S2CID 120535020. doi:10.1007/s10762-014-0057-0. 
  18. ^ Daniel M. Mittleman, Stefan Hunsche, Luc Boivin, & Martin C. Nuss. (2001). T-ray tomography. Optics Letters, 22(12)
  19. ^ Katayama, I., Akai, R., Bito, M., Shimosato, H., Miyamoto, K., Ito, H., & Ashida, M. (2010). Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals. Applied Physics Letters, 97(2), 021105. doi: 10.1063/1.3463452
  20. ^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno. Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures. Applied Physics Letters. 2010-10-25, 97 (17): 171501. doi:10.1063/1.3505339. 
  21. ^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. Terahertz-driven linear electron acceleration. Nature Communications. 2015-10-06, 6 (1): 8486. doi:10.1038/ncomms9486. 
  22. ^ Jing, Chunguang. Dielectric Wakefield Accelerators. Reviews of Accelerator Science and Technology. 2016, 09 (6): 127–149. doi:10.1142/s1793626816300061. 
  23. ^ Poortmans, Jef. IMEC website: Photovoltaic Stacks. [2008-02-17]. (原始內容存檔於2007-10-13). 
  24. ^ A new heat engine with no moving parts is as efficient as a steam turbine. MIT News | Massachusetts Institute of Technology. 13 April 2022 [2022-04-13]. (原始內容存檔於2023-06-07) (英語). 
  25. ^ Radebaugh, Ray. Cryocoolers: the state of the art and recent developments. Journal of Physics: Condensed Matter. 2009-03-31, 21 (16): 164219. Bibcode:2009JPCM...21p4219R. ISSN 0953-8984. PMID 21825399. S2CID 22695540. doi:10.1088/0953-8984/21/16/164219 (英語). 
  26. ^ Cooper, Bernard E; Hadfield, Robert H. Viewpoint: Compact cryogenics for superconducting photon detectors. Superconductor Science and Technology. 2022-06-28, 35 (8): 080501. Bibcode:2022SuScT..35h0501C. ISSN 0953-2048. S2CID 249534834. doi:10.1088/1361-6668/ac76e9 (英語). 
  27. ^ Non-Parabolic Model for the Solution of 2-D Quantum Transverse States Applied to Narrow Conduction Channel Simulation. Springer. 2006 [2023-08-04]. (原始內容存檔於2023-08-04). 
  28. ^ Zawadzki, Wlodzimierz; Lax, Benjamin. Two-Band Model for Bloch Electrons in Crossed Electric and Magnetic Fields. Physical Review Letters. 1966, 16: 1001 [2023-08-04]. doi:10.1103/PhysRevLett.16.1001. (原始內容存檔於2023-08-04). 
  29. ^ Tang, Shuang; Mildred, Dresselhaus. Phase diagrams of BiSb thin films with different growth orientations. Physical Review B. 2012, 86 (7): 075436 [2023-08-04]. doi:10.1103/PhysRevB.86.075436. (原始內容存檔於2023-06-19). 
  30. ^ Tang, Shuang; Mildred, Dresselhaus. Electronic phases, band gaps, and band overlaps of bismuth antimony nanowires. Physical Review B. 2014, 89 (4): 045424 [2023-08-04]. doi:10.1103/PhysRevB.89.045424. (原始內容存檔於2023-06-19). 
  31. ^ Heremans, Joseph. Electronic Properties of Nano-Structured Bismuth-Antimony Materials. Physical Review Letters. 2002, 88: 216801 [2023-08-04]. doi:10.1103/PhysRevLett.88.216801. (原始內容存檔於2023-08-04). 
  32. ^ Joesph Heremans. Thermoelectrics Born Again. 2018-04-09 [2023-08-04]. (原始內容存檔於2023-08-04). 
  33. ^ Nelson, James T. Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si. American Journal of Physics (American Association of Physics Teachers (AAPT)). 1955, 23 (6): 390–390. ISSN 0002-9505. doi:10.1119/1.1934018. 
  • 多恩豪斯,R.,尼姆茨,G.,施利希特,B.(1983)。窄帶隙半導體。施普林格現代物理學小冊子98 ,ISBN 978-3-540-12091-9 (打印)ISBN 978-3-540-39531-7 (在線)