雅可比猜想
雅可比猜想(Jacobian conjecture)是多變量多項式的一個著名問題,最初是由數學家凱勒(Ott-Heinrich Keller)於1939年提出,之後Shreeram Abhyankar取現名,並將之廣為傳播,以作為代數幾何的問題中,只需稍多於微積分的知識就能闡述的一個例子。
雅可比猜想直至2017年仍未得到正確證明。
雅可比行列式
編輯令n>1為固定的整數,考慮多項式F1, ... , Fn,變量為X=(X1, ... , Xn),系數在特徵為零的代數閉域k中。(可假設k為複數域 。)也就是說 。定義函數F: kn→kn為
- F(c1, ... , cn)=(F1(c1, ... , cn), ... , Fn(c1, ... , cn))
函數F的雅可比行列式JF是由F的偏導數組成的n×n矩陣的行列式
JF也是變量為X的多項式函數。
敘述
編輯多變量微積分的反函數定理指出如在某一點有JF ≠ 0,那麼在該點附近F有反函數。由於k是代數閉域,JF是多項式,因此JF必定在某些點上為0,除非JF是非零的常數函數。以下是一項基本結果:
則 有反函數,且此反函數亦屬於 。
外部連結
編輯- (英文)莫宗堅簡論雅可比猜想的網頁 (頁面存檔備份,存於互聯網檔案館)
這是一篇關於數學的小作品。您可以透過編輯或修訂擴充其內容。 |