# 巴塞尔问题

${\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}=\lim _{n\to +\infty }\left({\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{n^{2}}}\right)}$

## 欧拉对这个问题的研究

${\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }$

${\displaystyle {\frac {\sin x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+\cdots }$

{\displaystyle {\begin{aligned}{\frac {\sin x}{x}}&{}=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \\&{}=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots \end{aligned}}}

${\displaystyle -\left({\frac {1}{\pi ^{2}}}+{\frac {1}{4\pi ^{2}}}+{\frac {1}{9\pi ^{2}}}+\cdots \right)=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}$

${\displaystyle -{\frac {1}{6}}=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}$

${\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}$

## 黎曼ζ函数

${\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}}$

s = 2，我们可以看出ζ(2)等于所有平方数的倒数之和：

${\displaystyle \zeta (2)=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\approx 1.644934}$

${\displaystyle \sum _{n=1}^{N}{\frac {1}{n^{2}}}<1+\sum _{n=2}^{N}{\frac {1}{n(n-1)}}=1+\sum _{n=2}^{N}\left({\frac {1}{n-1}}-{\frac {1}{n}}\right)=1+1-{\frac {1}{N}}\,{\xrightarrow {N\to \infty }}\,2}$

${\displaystyle \zeta (2n)={\frac {(2\pi )^{2n}(-1)^{n+1}B_{2n}}{2\cdot (2n)!}}}$

## 严密的证明

${\displaystyle \tan \theta >\theta >\sin \theta }$
${\displaystyle {\frac {1}{\tan \theta }}<{\frac {1}{\theta }}<{\frac {1}{\sin \theta }}}$
${\displaystyle \cot ^{2}\theta <{\frac {1}{\theta ^{2}}}<\csc ^{2}\theta }$

${\displaystyle \sum _{k=1}^{m}{\frac {1}{k^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}}$

x为一个实数，满足0 < x < π/2，并设n为正整数。从棣莫弗定理和余切函数的定义，可得：

${\displaystyle {\frac {\cos(nx)+i\sin(nx)}{(\sin x)^{n}}}={\frac {(\cos x+i\sin x)^{n}}{(\sin x)^{n}}}=\left({\frac {\cos x+i\sin x}{\sin x}}\right)^{n}=(\cot x+i)^{n}}$

${\displaystyle (\cot x+i)^{n}={n \choose 0}\cot ^{n}x+{n \choose 1}(\cot ^{n-1}x)i+\cdots +{n \choose {n-1}}(\cot x)i^{n-1}+{n \choose n}i^{n}}$
${\displaystyle =\left[{n \choose 0}\cot ^{n}x-{n \choose 2}\cot ^{n-2}x\pm \cdots \right]\;+\;i\left[{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots \right]}$

${\displaystyle {\frac {\sin(nx)}{(\sin x)^{n}}}=\left[{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots \right]}$

${\displaystyle 0={{2m+1} \choose 1}\cot ^{2m}x_{r}-{{2m+1} \choose 3}\cot ^{2m-2}x_{r}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}}$

${\displaystyle p(t):={{2m+1} \choose 1}t^{m}-{{2m+1} \choose 3}t^{m-1}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}}$

${\displaystyle \cot ^{2}x_{1}+\cot ^{2}x_{2}+\cdots +\cot ^{2}x_{m}={\frac {\binom {2m+1}{3}}{\binom {2m+1}{1}}}={\frac {2m(2m-1)}{6}}}$

${\displaystyle \csc ^{2}x_{1}+\csc ^{2}x_{2}+\cdots +\csc ^{2}x_{m}={\frac {2m(2m-1)}{6}}+m={\frac {2m(2m+2)}{6}}}$

${\displaystyle {\frac {2m(2m-1)}{6}}<\left({\frac {2m+1}{\pi }}\right)^{2}+\left({\frac {2m+1}{2\pi }}\right)^{2}+\cdots +\left({\frac {2m+1}{m\pi }}\right)^{2}<{\frac {2m(2m+2)}{6}}}$

${\displaystyle {\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m-1}{2m+1}}\right)<{\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}<{\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m+2}{2m+1}}\right)}$

m趋于无穷大时，左面和右面的表达式都趋于π2/6，因此根据夹挤定理，有：

${\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}=\lim _{m\to \infty }\left({\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}\right)={\frac {\pi ^{2}}{6}}}$

## 傅里叶级数的证明

${\displaystyle f(x)=\sum _{n=1}^{\infty }{\frac {2(-1)^{n+1}}{n}}\sin(nx)}$

${\displaystyle {\pi ^{2} \over 3}={1 \over 2\pi }\int _{-\pi }^{\pi }f^{2}(x)\,dx=\sum _{n=1}^{\infty }{1 \over 2\pi }\int _{-\pi }^{\pi }(2{\frac {(-1)^{n+1}}{n}}\sin(nt))^{2}dt=2\sum _{n=1}^{\infty }{1 \over n^{2}}}$

${\displaystyle {\pi ^{2} \over 6}=\sum _{n=1}^{\infty }{1 \over n^{2}}}$