(A) 自噬示意圖; (B) 果蠅幼蟲的脂肪體自噬結構的電子顯微鏡照片; (C) 螢光標記的自噬體飢餓小鼠肝細胞

自噬(英語:Autophagy,或稱自體吞噬)是一個涉及到細胞自身結構通過溶酶體機制而被分解的過程。這是一個受到緊密調控的步驟,此步驟是細胞生長、發育穩態中的常規步驟,它幫助細胞產物在合成、降解以及接下來的循環中保持一個平衡狀態。

命名為“自噬”(英語:Autophagy)是由比利時化學家克里斯汀·德·迪夫在1963年發現的[1]。當代的自噬研究是1990年代酵母的研究人員通過識別的自噬相關基因而被推動[2][3][4][5][6]。其中之一人,日本科學家大隅良典因“對細胞自噬機制的發現”獲得2016年度的诺贝尔生理学或医学奖[7]

歷史编辑

1962年1月,洛克菲勒醫學研究院Keith R. Porter英语Keith R. Porter和他的學生Thomas Ashford報導了添加胰高血糖素後,大鼠細胞中的溶酶體數量增加,並且發現一些向細胞中心移位的溶酶體,包含着線粒體等細胞器的成分。Porter和Ashford錯誤地將其數據解釋為溶酶體的形成過程,不認為溶酶體是像線粒體一樣是存在於細胞質中的細胞器,並且將觀察到的水解酶理解為是由微體英语Microbody產生的水解酶[8]

1963年,赫魯班(Hruban)、Spargo及其同事等報道了局部細胞質降解的超微結構,該報道參考了1955年德國科學家的損傷誘導融合模型,觀察到了從細胞質融合到生成溶酶體的三個連續步驟,並提出這個過程不僅由損傷階段誘發,而且在細胞分化的生理階段,同樣的過程也在「細胞器處置」和「細胞成分再利用」中行使功能[9]。這篇報道引起了當時也在洛克菲勒醫學研究所工作的克里斯汀·德·迪夫的興趣,與之前Porter和Ashford的看法不同,德迪夫受到這一發現的啟發,把這種現象命名為自噬(autophagy),並提出在胰高血糖素引發的肝細胞降解過程中,溶酶體發揮了功能。他與其學生拉塞爾·德特(Russell Deter)一起證實胰高血糖素誘發的自噬是由溶酶體介導的[10][11],並且在1967年連續發表兩篇文章,他也由此成為第一位報道溶酶體參與細胞內自噬的科學家。這是首次確定溶酶體是細胞內自噬的部位[1][12][13]。1974年德迪夫發現細胞內結構及功能性器官,即溶酶體和過氧物酶體,而與另外兩位科學家共享了該年度的諾貝爾生理學或醫學獎

 
日本生物學家大隅良典在東京工業大學實驗室內的照片

在1990年代,幾組科學家使用發芽酵母獨立地發現了自噬相關基因。值得注意的是,大隅良典(他於2016年獲得了諾貝爾生理學或醫學獎 ,儘管有人指出該獎項可能更具包容性[14])和Michael Thumm研究了飢餓誘導的非選擇性自噬[3][4][5]。同時,Daniel J Klionsky發現了細胞質-真空定向(CVT)途徑,這是選擇性自噬的一種形式[2][6]。他們很快發現他們實際上是在從不同的角度看本質上相同的路徑[15][16]。最初,由酵母菌組發現的基因被賦予不同的名稱(APG、AUT、CVT、GSA、PAG、PAZ和PDD)。2003年,有研究人員提出了統一的命名法,即使用ATG表示自噬基因[17]

21世紀初,自噬研究領域經歷快速的發展。 ATG基因的知識為科學家提供了更方便的工具,以分析自噬在人類健康和疾病中的功能。1999年,貝絲·萊文(Beth Levine)的小組發表了一項具有里程碑意義的發現[18] ,將自噬與癌症聯繫起來。迄今為止,癌症與自噬之間的關係仍然是自噬研究的主要主題。自噬在神經退行性變和免疫防禦中的作用也受到了廣泛的關注。2003年,第一屆戈登自噬研究會議(Gordon Research Conference on autophagy)在沃特維爾舉行[19]。2005年,Daniel J Klionsky發行了致力於該領域的科學期刊《自噬》。2007年,首屆Keystone自噬專題討論會在蒙特里舉行[20]。2008年,Carol A Mercer創建了BHMT融合蛋白(GST-BHMT),該蛋白在細胞系英语Immortalised cell line中顯示飢餓誘導的位點特異性片段化。甜菜鹼高半胱氨酸甲基轉移酶英语Betaine—homocysteine S-methyltransferase的降解是一種可用於評估哺乳動物細胞中自噬通量的代謝酶。

巨自噬作用、微自噬作用英语Microautophagy伴侶分子介導自噬作用英语Chaperone-mediated autophagy由自噬相關基因及其相關酶介導[21][22][23] 。巨自噬作用細為本體自噬和選擇性自噬(bulk and selective autophagy)。在選擇性自噬中,又細分為線粒體自噬作用英语Mitophagy[24]、脂自噬作用、過氧化物酶體自噬作用[25]葉綠體自噬作用[26]核糖體自噬作用[27]等。

 
圖中顯示了自噬體的形成,其中高爾基體在左上方,線粒體在右上方,而自噬體則在底部中心
  • 巨自噬作用是主要的自噬途徑,主要用於清除受損的細胞器或未被使用的蛋白質[28]。首先,吞噬細胞將需要降解的物質吞噬,並在受損的細胞器周圍形成自噬體[29]。然後自噬體穿過細胞的細胞質到達溶酶體,兩個細胞器融合。在溶酶體內,自噬體內的內容物通過酸性溶酶體水解酶降解[30]
 
巨自噬與微自噬作用過程的對比
  • 微自噬作用涉及將細胞質內的物質直接吞噬到溶酶體中[31]。這是通過內陷發生的,意味著溶酶體膜向內折疊或細胞向外突出[29]
  • 伴侶分子介導自噬作用(CMA)是一個非常複雜和特異的途徑,涉及到包含hsc70的複合物的識別[29][32]。這意味著蛋白質必須包含hsc70複合物的識別位點,這將使其能夠與該分子伴侶結合,形成CMA-底物/分子伴侶複合物。然後,該複合物移動到溶酶體膜結合蛋白上,該蛋白將識別並與CMA受體結合。底物蛋白在識別後就解折疊,並在溶酶體hsc70分子伴侶的幫助下,跨越溶酶體膜轉運。CMA與其他類型的自噬存在顯著差異,因為它以一種一種的方式轉運蛋白物質,並且對哪種物質穿過溶酶體屏障具有極高的選擇性[28]
  • 線粒體自噬作用是通過自噬選擇性地降解線粒體。經歷損傷或受壓後,經常發生線粒體缺陷。線粒體吞噬作用促進線粒體的更新,並且防止功能異常的線粒體積聚,從而導致細胞變性。它是由酵母中的Atg3、NIX及其調節物BNIP3在哺乳動物中介導的。線粒體吞噬作用受到PINK1和parkin蛋白的調節。線粒體吞噬作用的發生不僅限於線粒體受損,還包括未受損的線粒體。
  • 脂自噬作用是通過自噬降解脂質[33],該功能在動物真菌細胞中都存在[34]。然而,脂肪吞噬作用在植物細胞中的作用仍然難以捉摸[35]。在脂質吞噬中,靶標是稱為脂質滴(LDs)的脂質結構,具有主要是三酰基甘油(TAGs)核心,以及單層磷脂和膜蛋白組成的球形細胞器。在動物細胞中,主要的脂肪吞噬途徑是通過吞噬細胞吞噬LD,即巨自噬。另一方面,在真菌細胞中,微脂代謝是主要途徑,尤其是在發芽酵母及釀酒酵母中得到了很好的研究[36]。脂吞噬作用最早在小鼠中發現,並且在2009年發表[37]

功能编辑

修復機制编辑

自噬可降解受損的細胞器、細胞膜蛋白質,而抵制自噬作用被認為是造成受損細胞蓄積和衰老的其中一個主要原因[38]。自噬和自噬調節劑參與溶酶體損傷的反應,通常由半乳凝素-3英语Galectin-3半乳凝素-8英语Galectin-8半乳凝素英语Galectin指導,半乳凝素-8負責募集TRIM16英语TRIM16[39]和NDP52等受體,並直接影響mTOR和AMPK的活性,而mTOR和AMPK分別抑制和激活自噬作用[40]

程序性細胞死亡编辑

程序性細胞死亡(PCD)的其中一個機制與自噬小體的出現有關,並且依賴於自噬蛋白。這種細胞死亡形式最有可能與形態學上定義為自噬PCD(autophagic PCD)的過程相對應。其中一個問題,是步入死亡過程的細胞中,其自噬的活性是導致其死亡的原因,還是為了防止細胞死亡的一個嘗試。迄今為止,形態學和組織化學研究並未證明自噬過程與細胞死亡之間存在因果關係。最近有論據認為,垂死細胞中的自噬活性可能是一種生存機制[41][42]。對昆蟲變態的研究表明,細胞經歷了一種PCD形式,這種形式與其他形式截然不同。這些已被提議作為自噬作用使細胞死亡的例子[43] 。最近的藥理和生化研究表明,有助細胞生存或致死的自噬可以通過應激期間,尤其是病毒感染後,調控信號的類型和程度來區分[44] 。然而尚未在病毒系統之外觀察到這些發現。

臨床意義编辑

 
關鍵基因表達改變對ER和高爾基體功能、囊泡運輸、mTOR信號傳導和自噬的影響

骨關節炎编辑

由於自噬隨著年齡的增長而下降,是骨關節炎的主要危險因素,因此自噬在該疾病發展中的作用得到重視。在人類和小鼠的關節軟骨中,參與自噬的蛋白質都隨著年齡的增長而減少[45]。經培養的軟骨外植體,其機械損傷也會減少自噬蛋白[46]。自噬在正常的軟骨中會不斷被激活,但會隨著年齡的增長而受到損害,並且先於軟骨細胞死亡和出現結構受到破壞的現象[47]。因此,自噬參與了關節的正常保護過程。

炎症性腸病编辑

炎症性腸病(inflammatory bowel disease)是由易感基因、環境和免疫系統之間一系列的相互作用所導致的慢性且易復發的消化系統疾病,包括潰瘍性結腸炎克隆氏症等。功能失調的自噬被認為是炎症性腸病的發病因素。臨床上廣泛使用的炎症性腸病治療劑與自噬均密切相關,均能誘導細胞自噬的發生,包括類固醇5-氨基水楊酸硫銼嘌呤[48]尼古丁目前已被用作潰瘍性結腸炎患者的治療劑[49],咀嚼尼古丁口香糖可以有效控制輕度及中度結腸炎的病症[50]。經尼古丁處理後,細胞內雙層自噬泡及自噬小體的數量明顯增高。尼古丁誘導自噬的分子機制可能與內質網應激相關,或者可能與mTOR信號通路相關[51][52]。已有不少研究證實尼古丁與內質網應激存在密切關係,因為他們發現尼古丁上調GRP78/BIP的表達水平,並且直接誘導內質網應激,上調內質網應激標誌物PERK、EIF2A英语EIF2A等的表達或磷酸化修飾。對低濃度尼古丁的研究有助於開發調節自噬治療潰瘍性結腸炎的新治療靶點。

牙周炎编辑

自噬能促進感染細胞對病原體和毒素的清除,抵抗細菌的入侵。然而,牙齦卟啉單胞菌英语Porphyromonas gingivalis等牙周細菌則可逃避自噬分子的識別,干擾自噬體形成,阻止自噬體和溶酶體融合,甚至可以在自噬體中生存和增殖,利用其中的蛋白質等物質為自身生存提供能量[53]。目前的研究雖提示自噬與牙周炎相關,但沒有充分的證據證實自噬在牙周炎中的作用是保護作用還是病理作用。因為有研究發現牙周炎患者相較於健康人群的外周血單核細胞中,自噬基因表達量更高,而自噬作用被抑制後,出現了細胞存活率降低及凋亡細胞比例增加的情況,表明自噬在牙周炎中的保護作用[54]。然而,有研究得出相反的結果,表明自噬在牙周炎中的病理作用[55]

結核病编辑

目前發現自噬可以促進巨噬細胞內結核分枝桿菌吞噬體的形成,並且有利於結核桿菌的清除[56]。除此之外,自噬可以增強一線抗結核藥物,例如異煙肼吡嗪酰胺的作用[57]

癌症编辑

當調節細胞分化的幾種不同途徑被干擾時,通常會發生癌症。自噬在癌症中起著重要作用,既可以預防癌症,也可以促進癌症的發展[58]。自噬可通過促進已飢餓或通過自噬降解凋亡介體的腫瘤細胞的存活,促進癌症的發展。在這種情況下,在自噬的後期階段使用氯喹等抑製劑,會增加被抗腫瘤藥殺死的癌細胞數量[59]。自噬在癌症中的作用已得到高度研究和審查。有證據強調自噬既是腫瘤抑制因子又是腫瘤細胞存活的因素。然而有研究表明,根據幾種模型,自噬更可能被用作抑癌劑。

  • 抑癌藥:目前已經對小鼠和Beclin1英语BECN1(一種調節自噬的蛋白質)進行了一些實驗。當Beclin1基因變為雜合子時,研究人員發現小鼠體內更容易出現腫瘤[60]。然而,當Beclin1過度表達時,腫瘤的發展就會受到抑制[61] 。在解釋beclin突變體的表型,並且將觀察結果歸因於自噬存在缺陷時應該要格外小心。Beclin1通常是產生磷脂酰肌醇3-磷酸英语Phosphatidylinositol 3-phosphate的必需物質,因此它會影響許多溶酶體和內體功能,包括內吞作用和已活化的內吞降解生長因子受體。有認為Beclin1存在着通過非依賴自噬的途徑,影響癌症發展的可能性,然而事實是Atg7或Atg5等的核心自噬因子(暫時未知會影響其他細胞進程,並且不影響細胞增殖和細胞死亡)敲除各個基因時,顯示出非常不同的表型。此外,Beclin1的完全基因敲落會對胚胎致死,而Atg7或Atg5的敲落對則胚胎無害。壞死和慢性炎症也已顯示出通過自噬而受到限制,有助於防止腫瘤細胞的形成[62]
  • 腫瘤細胞存活率:自噬在腫瘤細胞存活中發揮重要作用。在癌細胞中,自噬被用作一種應對細胞壓力的途徑[63]。例如,miRNA-4673誘導自噬是一種有助癌細胞生存的機制,可以提高癌細胞對放射線的抵抗力[64] 。一旦這些自噬相關基因被抑制,細胞死亡的情況就會加劇[65]。自噬抵消了代謝能的增加。這些代謝壓力包括缺氧、營養缺乏及細胞增殖增加。這些壓力激活自噬,以回收ATP並維持癌細胞的存活[66]。自噬已被證明可以通過維持細胞能量的產生,而使腫瘤細胞持續地生長。通過抑制這些腫瘤細胞中的自噬基因,發現腫瘤消退,並且延長了受腫瘤影響的器官的存活率。此外,也顯示出抑制自噬可以增強抗癌治療的效果[66]
  • 細胞死亡機制:承受極大壓力的細胞會通過細胞凋亡壞死經歷細胞死亡。長時間的自噬激活會導致蛋白質和細胞器的高轉換率。高於生存閾值的比率,可能會殺死具有高凋亡閾值的癌細胞[66][67]。該技術可以用作癌症的治療方法。
  • 治療目標:有研究發現,靶向自噬可能是抗擊癌症的可行治療方法。自噬在腫瘤抑制和腫瘤細胞存活中均起作用。因此,自噬可以用作預防癌症的策略。第一種策略是誘導自噬並增強其腫瘤抑制特性。第二種策略是抑制自噬,從而誘導細胞凋亡[65]。通過研究自噬誘導療法期間的劑量反應抗腫瘤作用,測試了第一種策略。這些療法表明自噬以劑量依賴性方式增加。 這也直接與癌細胞的生長呈劑量依賴性[63][67]。該數據支持將鼓勵自噬的療法的發展。其次,抑制直接誘導自噬的蛋白質途徑也可以用作抗癌治療[65][67]。第二種策略發現自噬是用於維持體內穩態的蛋白質降解系統,並且發現抑制自噬通常會導致細胞凋亡。抑制自噬的風險較高,因為可能導致細胞存活,而不是預計中的細胞死亡[63]
  • 自噬的負調節物mTOR英语mTORCFLAR英语CFLAR表皮生長因子受體等自噬的負調節物,被安排在自噬級聯反應的不同階段發揮作用。自噬消化的最終產物也可以充當負反饋調節機制,以阻止長時間的活動[68]

柏金遜症编辑

 
自噬調節對帕金森氏病的影響

柏金遜症是一種神經退化性疾​​病,可以肇因於黑質緻密部英语Pars compacta的多巴胺性神經元退化。柏金遜症的特徵是在受影響的神經元中,包含着細胞無法分解的α-突觸核蛋白英语Alpha-synuclein,其以路易氏體英语Lewy body的形式堆積,故而柏金遜症被視為一種突觸核蛋白病變。自噬途徑的失調和調節自噬的等位基因的突變被認為會引起神經退化性疾​​病。自噬對神經元的生存至關重要。如果沒有有效的自噬作用,神經元會聚集遍在蛋白化的蛋白質聚集體並降解。蛋白質是已被泛素標記以降解的蛋白質。突觸核蛋白等位基因的突變導致溶酶體pH值升高和水解酶抑制。由實驗結果可知,溶酶體降解能力降低。該疾病涉及多種基因突變,包括功能喪失PTEN誘導激酶-1英语PINK1[69]和Parkin[70] 。這些基因的功能喪失可能導致線粒體積累和蛋白質聚集體受損,而不是導致細胞變性。線粒體參與柏金遜症。在特發性帕金森氏病中,該病通常是由線粒體功能異常、細胞氧化應激、自噬作用的改變和蛋白質聚集引起的,並會導致線粒體腫脹和去極化[71]

不育症编辑

自噬在精子發生過程中起着重要作用。精原幹細胞中的缺失或受損可引起不可逆性的弱精子症及無精子症等,導致不育症[72]。當遇精原幹細胞到不利環境時,會為了適應代謝條件的變化而進行細胞自噬調節。例如,有研究指出三鄰甲苯基磷酸酯等生殖毒性物質均可使大鼠精原幹細胞的自噬標誌蛋白及LC3-II/LC3-I 比明顯增加,細胞內含有大量退化細胞器的自噬泡顯著增加[73][74]。而且,精原幹細胞中的自噬作用可以清除錯誤折疊蛋白質,以及受損細胞器,故而對細胞起著保護作用。此外,自噬作用可以促進減數分裂前DNA複製,既為細胞提供氨基酸核苷酸[75][76],也保證基因遺傳的穩定性[77]。PDLIM1蛋白是一種精子細胞骨架組裝的負調控因子,並且是通過自噬途徑而降解,以維持微管結構的組裝[78]。這對精子形成有著重要作用。然而,有研究指出高脂肪食物可誘導小鼠體內的自噬作用被過度激活,導致精子生成存在缺陷[79]。自噬與精子活力之間的關係是雙重的,並且是與自噬的水平有關。

抑鬱症编辑

自噬可能參與抑鬱症的發生[80],有多個證據提示細胞自噬的異常可能參與抑鬱症的發生[81],例如有研究指出精神分裂症斷裂基因1英语DISC1(一種精神疾病的關鍵易感基因)能被自噬途徑降解[82]、躁狂抑鬱症患者血清中蛋白激酶B(AKT)和mTOR 信使核糖核酸水平下降[83]、雙相抑鬱症患者腦內Bcl-2的水平下降[84],已知Bcl-2是通過與Beclin-1結合從而抑制自噬的發生。自噬對抑鬱症等神經系統疾病的調節作用是正向,抑或負向仍然存有爭議[85]。有研究提示激活自噬能促進突觸的發展[86],另一些研究則證實抗抑鬱藥可以通過抑制自噬,發揮抗抑鬱的作用。

作為藥物靶標编辑

由於自噬失調與多種疾病的發病機理有關,因此科研人員投入了許多努力來鑑定和表徵可以調節自噬的合成人工合成小分子或天然小分子[87]

檢測方法编辑

第一是LC3 turnover實驗,因為單檢測LC3-II的靜態水平並不能夠完全反映細胞內的自噬潮變化,故而需要聯合自噬後期抑制劑如溶酶體抑制劑Bafilomycin A1或CQ,來比較LC3-II在抑制劑加入前後的變化差異。第二是綠色螢光蛋白(GFP)的抗降解性,通過檢測轉染了GFP-LC3的細胞所產生的GFP片段來評判細胞內自噬水平的變化。第三是以p62英语Nucleoporin 62蛋白作為自噬活性指標,經常被科研人員用作自噬水平升高的輔助檢測手段,然而需聯合其他檢測手段進行證實。第四是mRFP-GFP-LC3雙螢光活細胞成像,實時動態監測自噬過程,並且能夠通過顏色變化確定自噬潮水平的高低。第五是使用電子顯微鏡,然而對實驗設備和實驗者的技能與辨別能力要求較高[88],有學者推薦進行雙盲實驗來定量細胞中自噬體或自噬溶酶體數量。第六是流式細胞術,可以檢測各個細胞時相的自噬水平,還可以直接計算出螢光強度和陽性細胞百分比[89],然而在細胞在染色之前,需要使用去垢劑預處理細胞質中的LC3-I。

影響因素编辑

第一個主要影響因素是培養基的新鮮程度及血清,防止較高溫度下長時間或不適當存儲而導致的左旋麩醯胺酸(L-glutamine)降解,並產生。目前已知氨會因影響溶酶體的pH值而對自噬潮有明顯的抑製作用,並且通過抑制mTORC1促進自噬[90]。此外,血清也對自噬活性也有顯著影響。第二個主要影響因素是培養基的換液時間,因為培養基換液的目的,就是要減弱培養基及細胞代謝產物,對藥物靶點相關信號通路本底產生的影響。

參閱编辑

參考文獻编辑

  1. ^ 1.0 1.1 Klionsky, DJ. Autophagy revisited: A conversation with Christian de Duve. Autophagy. 2008, 4 (6): 740–3. PMID 18567941. doi:10.4161/auto.6398. 
  2. ^ 2.0 2.1 Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. Journal of Cell Biology. October 1992, 119 (2): 287-99. PMID 1400574. 
  3. ^ 3.0 3.1 Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology. October 1992, 119 (2): 301-11. PMID 1400575. 
  4. ^ 4.0 4.1 Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Letters. August 1994, 349 (2): 275-80. PMID 8050581. 
  5. ^ 5.0 5.1 Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. October 1993, 333 (1-2): 169-74. PMID 8224160. 
  6. ^ 6.0 6.1 Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. Journal of Cell Biology. November 1995, 131 (3): 591-602. PMID 7593182. 
  7. ^ The Nobel Prize in Physiology or Medicine 2016. Nobel Foundation. [3 October 2016]. 
  8. ^ Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. The Journal of Cell Biology. January 1962, 12 (1): 198–202. PMC 2106008. PMID 13862833. doi:10.1083/jcb.12.1.198. 
  9. ^ Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG. Focal cytoplasmic degradation. The American Journal of Pathology. June 1963, 42 (6): 657–83. PMC 1949709. PMID 13955261. 
  10. ^ Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. The Journal of Cell Biology. November 1967, 35 (2): C11–6. PMC 2107130. PMID 6055998. doi:10.1083/jcb.35.2.c11. 
  11. ^ Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology. May 1967, 33 (2): 437–49. PMC 2108350. PMID 4292315. doi:10.1083/jcb.33.2.437. 
  12. ^ de Duve C. Lysosomes revisited. European Journal of Biochemistry. December 1983, 137 (3): 391–7. PMID 6319122. doi:10.1111/j.1432-1033.1983.tb07841.x. 
  13. ^ Dunn WA, Schroder LA, Aris JP. Historical overview of autophagy. (编) Wang HG. Autophagy and Cancer. Springer. 2013: 3–4. ISBN 9781461465614. 
  14. ^ Van Noorden R, Ledford H. Medicine Nobel for research on how cells 'eat themselves'. Nature. October 2016, 538 (7623): 18–19. Bibcode:2016Natur.538...18V. PMID 27708326. doi:10.1038/nature.2016.20721. 
  15. ^ Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. The Journal of Biological Chemistry. July 1996, 271 (30): 17621–4. PMID 8663607. doi:10.1074/jbc.271.30.17621. 
  16. ^ Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proceedings of the National Academy of Sciences of the United States of America. October 1996, 93 (22): 12304–8. Bibcode:1996PNAS...9312304S. PMC 37986. PMID 8901576. doi:10.1073/pnas.93.22.12304. 
  17. ^ Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Developmental Cell. October 2003, 5 (4): 539–45. PMID 14536056. doi:10.1016/s1534-5807(03)00296-x. 
  18. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. December 1999, 402 (6762): 672–6. Bibcode:1999Natur.402..672L. PMID 10604474. doi:10.1038/45257. 
  19. ^ Autophagy in Stress, Development & Disease, 2003, Gordon Research Conference. 
  20. ^ Autophagy in Health and Disease (Z3), 2007, Keystone Symposia on Molecular and Cellular Biology. 
  21. ^ Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. The Biochemical Journal. January 2012, 441 (2): 523–40. PMC 3258656. PMID 22187934. doi:10.1042/BJ20111451. 
  22. ^ Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Structure and Function. December 2002, 27 (6): 421–9. PMID 12576635. doi:10.1247/csf.27.421. 
  23. ^ Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. January 2011, 12 (1): 9–14. PMC 4780047. PMID 21179058. doi:10.1038/nrm3028. 
  24. ^ Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry. July 2012, 393 (7): 547–64. PMC 3630798. PMID 22944659. doi:10.1515/hsz-2012-0119. 
  25. ^ Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. International Journal of Cell Biology. 2012, 2012: 512721. PMC 3320016. PMID 22536249. doi:10.1155/2012/512721. 
  26. ^ Lei L. Chlorophagy: Preventing sunburn. Nature Plants. March 2017, 3 (3): 17026. PMID 28248315. doi:10.1038/nplants.2017.26. 
  27. ^ An H, Harper JW. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nature Cell Biology. February 2018, 20 (2): 135–143. PMC 5786475. PMID 29230017. doi:10.1038/s41556-017-0007-x. 
  28. ^ 28.0 28.1 Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. January 2011, 469 (7330): 323–35. Bibcode:2011Natur.469..323L. PMC 3131688. PMID 21248839. doi:10.1038/nature09782. 
  29. ^ 29.0 29.1 29.2 Česen MH, Pegan K, Spes A, Turk B. Lysosomal pathways to cell death and their therapeutic applications. Experimental Cell Research. July 2012, 318 (11): 1245–51. PMID 22465226. doi:10.1016/j.yexcr.2012.03.005. 
  30. ^ Homma, K.S. List of autophagy-related proteins and 3D structures. Autophagy Database. 2011, 290 [2012-10-08]. (原始内容存档于2012-08-01). 
  31. ^ Castro-Obregon, Susana. The Discovery of Lysosomes and Autophagy. Nature Education. 2010, 3 (9): 49. 
  32. ^ Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Molecular and Cellular Biology. September 2008, 28 (18): 5747–63. PMC 2546938. PMID 18644871. doi:10.1128/MCB.02070-07. 
  33. ^ Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death and Differentiation. January 2013, 20 (1): 3–11. PMC 3524634. PMID 22595754. doi:10.1038/cdd.2012.63. 
  34. ^ Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochimica et Biophysica Acta. April 2016, 1861 (4): 269–84. PMID 26778751. doi:10.1016/j.bbalip.2016.01.006. 
  35. ^ Elander PH, Minina EA, Bozhkov PV. Autophagy in turnover of lipid stores: trans-kingdom comparison. Journal of Experimental Botany. March 2018, 69 (6): 1301–1311. PMID 29309625. doi:10.1093/jxb/erx433. 
  36. ^ van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell. January 2014, 25 (2): 290–301. PMC 3890349. PMID 24258026. doi:10.1091/mbc.E13-08-0448. 
  37. ^ Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. April 2009, 458 (7242): 1131–5. Bibcode:2009Natur.458.1131S. PMC 2676208. PMID 19339967. doi:10.1038/nature07976. 
  38. ^ Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005, 1 (3): 131–40. PMID 16874025. doi:10.4161/auto.1.3.2017. 
  39. ^ Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, Johansen T, Deretic V. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell. October 2016, 39 (1): 13–27. PMC 5104201. PMID 27693506. doi:10.1016/j.devcel.2016.08.003. 
  40. ^ Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, Phinney B, Johansen T, Deretic V. Galectins Control mTOR in Response to Endomembrane Damage. Molecular Cell. April 2018, 70 (1): 120–135.e8. PMC 5911935. PMID 29625033. doi:10.1016/j.molcel.2018.03.009 (英语). 
  41. ^ Tavassoly I. Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells. Springer Theses. Springer International Publishing. 2015. ISBN 978-3-319-14962-2. doi:10.1007/978-3-319-14962-2. 
  42. ^ Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death and Differentiation. November 2005,. 12 Suppl 2 (Suppl 2): 1528–34. PMID 16247500. doi:10.1038/sj.cdd.4401777. 
  43. ^ Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis?. Proceedings of the National Academy of Sciences of the United States of America. February 1993, 90 (3): 980–4. Bibcode:1993PNAS...90..980S. PMC 45794. PMID 8430112. doi:10.1073/pnas.90.3.980. 
  44. ^ Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, Lockshin RA, Garcia-Sastre A, Zakeri Z. mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology. March 2014,. 452-453 (March 2014): 175–190. PMC 4005847. PMID 24606695. doi:10.1016/j.virol.2014.01.008. 
  45. ^ Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis and Rheumatism. March 2010, 62 (3): 791–801. PMC 2838960. PMID 20187128. doi:10.1002/art.27305. 
  46. ^ Caramés B, Taniguchi N, Seino D, Blanco FJ, D'Lima D, Lotz M. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis and Rheumatism. April 2012, 64 (4): 1182–92. PMC 3288456. PMID 22034068. doi:10.1002/art.33444. 
  47. ^ Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis & Rheumatology. June 2015, 67 (6): 1568–76. PMC 4446178. PMID 25708836. doi:10.1002/art.39073. 
  48. ^ Iida, T; Onodera, K; Nakase, H. Role of autophagy in the pathogenesis of inflammatory bowel disease.. World journal of gastroenterology. 2017-03-21, 23 (11): 1944–1953 [2020-01-23]. PMID 28373760. doi:10.3748/wjg.v23.i11.1944. 
  49. ^ Lunney, PC; Leong, RW. Review article: Ulcerative colitis, smoking and nicotine therapy.. Alimentary pharmacology & therapeutics. 2012-12, 36 (11-12): 997–1008 [2020-01-23]. PMID 23072629. doi:10.1111/apt.12086. 
  50. ^ Berkowitz, L; Schultz, BM; Salazar, GA; Pardo-Roa, C; Sebastián, VP; Álvarez-Lobos, MM; Bueno, SM. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn's Disease and Ulcerative Colitis.. Frontiers in immunology. 2018, 9: 74 [2020-01-23]. PMID 29441064. doi:10.3389/fimmu.2018.00074. 
  51. ^ Wong, MK; Holloway, AC; Hardy, DB. Nicotine Directly Induces Endoplasmic Reticulum Stress Response in Rat Placental Trophoblast Giant Cells.. Toxicological sciences : an official journal of the Society of Toxicology. 2016-05, 151 (1): 23–34 [2020-01-23]. PMID 26803847. doi:10.1093/toxsci/kfw019. 
  52. ^ Guan, Y; Zhang, L; Li, X; Zhang, X; Liu, S; Gao, N; Li, L; Gao, G; Wei, G; Chen, Z; Zheng, Y; Ma, X; Siwko, S; Chen, JL; Liu, M; Li, D. Repression of Mammalian Target of Rapamycin Complex 1 Inhibits Intestinal Regeneration in Acute Inflammatory Bowel Disease Models.. Journal of immunology (Baltimore, Md. : 1950). 2015-07-01, 195 (1): 339–46 [2020-01-23]. PMID 26026060. doi:10.4049/jimmunol.1303356. 
  53. ^ Bélanger, M; Rodrigues, PH; Dunn WA, Jr; Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells.. Autophagy. NaN, 2 (3): 165–70 [2020-01-23]. PMID 16874051. doi:10.4161/auto.2828. 
  54. ^ Levine, B; Klionsky, DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy.. Developmental cell. 2004-04, 6 (4): 463–77 [2020-01-23]. PMID 15068787. doi:10.1016/s1534-5807(04)00099-1. 
  55. ^ Tsuda, H; Ochiai, K; Suzuki, N; Otsuka, K. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells.. Journal of periodontal research. 2010-10, 45 (5): 626–34 [2020-01-23]. PMID 20546110. doi:10.1111/j.1600-0765.2010.01277.x. 
  56. ^ Chen, S; Yuan, J; Yao, S; Jin, Y; Chen, G; Tian, W; Xi, J; Xu, Z; Weng, D; Chen, J. Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis.. Autophagy. 2015, 11 (12): 2346–57 [2020-01-23]. PMID 26553601. doi:10.1080/15548627.2015.1109765. 
  57. ^ Kim, JJ; Lee, HM; Shin, DM; Kim, W; Yuk, JM; Jin, HS; Lee, SH; Cha, GH; Kim, JM; Lee, ZW; Shin, SJ; Yoo, H; Park, YK; Park, JB; Chung, J; Yoshimori, T; Jo, EK. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action.. Cell host & microbe. 2012-05-17, 11 (5): 457–68 [2020-01-23]. PMID 22607799. doi:10.1016/j.chom.2012.03.008. 
  58. ^ Furuya, N., Liang, X.H., and Levin, B. 2004. Autophagy and cancer. In Autophagy. D.J. Klionsky editor. Landes Bioscience. Georgetown, Texas, USA. 244-253.
  59. ^ Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN, Chrousos GP. New use for old drugs? Prospective targets of chloroquines in cancer therapy. Current Drug Targets. 2014, 15 (9): 843–51. PMID 25023646. doi:10.2174/1389450115666140714121514. 
  60. ^ Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B, 等. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation. December 2003, 112 (12): 1809–20. PMC 297002. PMID 14638851. doi:10.1172/JCI20039. 
  61. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B, 等. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. December 1999, 402 (6762): 672–6. Bibcode:1999Natur.402..672L. PMID 10604474. doi:10.1038/45257. 
  62. ^ Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J, 等. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. April 2008, 13 (4): 343–54. PMID 18394557. doi:10.1016/j.ccr.2008.02.001. 
  63. ^ 63.0 63.1 63.2 Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Research. January 2001, 61 (2): 439–44. PMID 11212227. 
  64. ^ Dökümcü K, Simonian M, Farahani RM. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death & Disease. October 2018, 9 (11): 1068. PMC 6195512. PMID 30341280. doi:10.1038/s41419-018-1088-6. 
  65. ^ 65.0 65.1 65.2 Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007, 3 (1): 28–31. PMC 2770734. PMID 16969128. doi:10.4161/auto.3269. 
  66. ^ 66.0 66.1 66.2 Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Molecular Cancer Therapeutics. September 2011, 10 (9): 1533–41. PMC 3170456. PMID 21878654. doi:10.1158/1535-7163.MCT-11-0047. 
  67. ^ 67.0 67.1 67.2 Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ. Dynamic Modeling of the Interaction Between Autophagy and Apoptosis in Mammalian Cells. CPT. April 2015, 4 (4): 263–72. PMC 4429580. PMID 26225250. doi:10.1002/psp4.29. 
  68. ^ Razaghi A, Heimann K, Schaeffer PM, Gibson SB. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis. February 2018, 23 (2): 93–112. PMID 29322476. doi:10.1007/s10495-018-1440-4. 
  69. ^ Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. May 2004, 304 (5674): 1158–60. Bibcode:2004Sci...304.1158V. PMID 15087508. doi:10.1126/science.1096284. 
  70. ^ Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. April 1998, 392 (6676): 605–8. Bibcode:1998Natur.392..605K. PMID 9560156. doi:10.1038/33416. 
  71. ^ Esteves AR, Arduíno DM, Silva DF, Oliveira CR, Cardoso SM. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD. Parkinson's Disease. January 2011, 2011: 693761. PMC 3026982. PMID 21318163. doi:10.4061/2011/693761. 
  72. ^ Tegelenbosch, RA; de Rooij, DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse.. Mutation research. 1993-12, 290 (2): 193–200 [2020-01-23]. PMID 7694110. doi:10.1016/0027-5107(93)90159-d. 
  73. ^ Liu, ML; Wang, JL; Wei, J; Xu, LL; Yu, M; Liu, XM; Ruan, WL; Chen, JX. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells.. Reproduction (Cambridge, England). 2015-02, 149 (2): 163–70 [2020-01-23]. PMID 25385720. doi:10.1530/REP-14-0446. 
  74. ^ Xu, LL; Liu, ML; Wang, JL; Yu, M; Chen, JX. Saligenin cyclic-o-tolyl phosphate (SCOTP) induces autophagy of rat spermatogonial stem cells.. Reproductive toxicology (Elmsford, N.Y.). 2016-04, 60: 62–8 [2020-01-23]. PMID 26815770. doi:10.1016/j.reprotox.2016.01.004. 
  75. ^ McNally, K; Berg, E; Cortes, DB; Hernandez, V; Mains, PE; McNally, FJ. Katanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro.. Molecular biology of the cell. 2014-04, 25 (7): 1037–49 [2020-01-23]. PMID 24501424. doi:10.1091/mbc.E13-12-0764. 
  76. ^ Kabeya, Y; Mizushima, N; Ueno, T; Yamamoto, A; Kirisako, T; Noda, T; Kominami, E; Ohsumi, Y; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.. The EMBO journal. 2000-11-01, 19 (21): 5720–8 [2020-01-23]. PMID 11060023. doi:10.1093/emboj/19.21.5720. 
  77. ^ Gallardo Bolaños, JM; Miró Morán, Á; Balao da Silva, CM; Morillo Rodríguez, A; Plaza Dávila, M; Aparicio, IM; Tapia, JA; Ortega Ferrusola, C; Peña, FJ. Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration.. PloS one. 2012, 7 (1): e30688 [2020-01-23]. PMID 22292020. doi:10.1371/journal.pone.0030688. 
  78. ^ Zhuo, C; Ji, Y; Chen, Z; Kitazato, K; Xiang, Y; Zhong, M; Wang, Q; Pei, Y; Ju, H; Wang, Y. Proteomics analysis of autophagy-deficient Atg7-/- MEFs reveals a close relationship between F-actin and autophagy.. Biochemical and biophysical research communications. 2013-08-02, 437 (3): 482–8 [2020-01-23]. PMID 23850690. doi:10.1016/j.bbrc.2013.06.111. 
  79. ^ Mu, Y; Yan, WJ; Yin, TL; Zhang, Y; Li, J; Yang, J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy.. Scientific reports. 2017-03-09, 7: 43475 [2020-01-23]. PMID 28276438. doi:10.1038/srep43475. 
  80. ^ Abelaira, HM; Réus, GZ; Neotti, MV; Quevedo, J. The role of mTOR in depression and antidepressant responses.. Life sciences. 2014-04-17, 101 (1-2): 10–4 [2020-01-24]. PMID 24582593. doi:10.1016/j.lfs.2014.02.014. 
  81. ^ Polajnar, M; Zerovnik, E. Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases.. Journal of cellular and molecular medicine. 2014-09, 18 (9): 1705–11 [2020-01-24]. PMID 25139375. doi:10.1111/jcmm.12349. 
  82. ^ Atkin, TA; Brandon, NJ; Kittler, JT. Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport.. Human molecular genetics. 2012-05-01, 21 (9): 2017–28 [2020-01-24]. PMID 22291444. doi:10.1093/hmg/dds018. 
  83. ^ Machado-Vieira, R; Zanetti, MV; Teixeira, AL; Uno, M; Valiengo, LL; Soeiro-de-Souza, MG; Oba-Shinjo, SM; de Sousa, RT; Zarate CA, Jr; Gattaz, WF; Marie, SK. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder.. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2015-04, 25 (4): 468–73 [2020-01-24]. PMID 25726893. doi:10.1016/j.euroneuro.2015.02.002. 
  84. ^ Kim, HW; Rapoport, SI; Rao, JS. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients.. Neurobiology of disease. 2010-03, 37 (3): 596–603 [2020-01-24]. PMID 19945534. doi:10.1016/j.nbd.2009.11.010. 
  85. ^ Son, JH; Shim, JH; Kim, KH; Ha, JY; Han, JY. Neuronal autophagy and neurodegenerative diseases.. Experimental & molecular medicine. 2012-02-29, 44 (2): 89–98 [2020-01-24]. PMID 22257884. doi:10.3858/emm.2012.44.2.031. 
  86. ^ Shen, W; Ganetzky, B. Autophagy promotes synapse development in Drosophila.. The Journal of cell biology. 2009-10-05, 187 (1): 71–9 [2020-01-24]. PMID 19786572. doi:10.1083/jcb.200907109. 
  87. ^ Moosavi, MA; Haghi, A; Rahmati, M; Taniguchi, H; Mocan, A; Echeverría, J; Gupta, VK; Tzvetkov, NT; Atanasov, AG. Phytochemicals as potent modulators of autophagy for cancer therapy.. Cancer letters. 2018-06-28, 424: 46–69 [2020-01-21]. PMID 29474859. doi:10.1016/j.canlet.2018.02.030. 
  88. ^ Ylä-Anttila, P; Vihinen, H; Jokitalo, E; Eskelinen, EL. Monitoring autophagy by electron microscopy in Mammalian cells.. Methods in enzymology. 2009, 452: 143–64 [2020-01-24]. PMID 19200881. doi:10.1016/S0076-6879(08)03610-0. 
  89. ^ Eng, KE; Panas, MD; Karlsson Hedestam, GB; McInerney, GM. A novel quantitative flow cytometry-based assay for autophagy.. Autophagy. 2010-07, 6 (5): 634–41 [2020-01-24]. PMID 20458170. doi:10.4161/auto.6.5.12112. 
  90. ^ Li, Z; Ji, X; Wang, W; Liu, J; Liang, X; Wu, H; Liu, J; Eggert, US; Liu, Q; Zhang, X. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR.. PloS one. 2016, 11 (4): e0153526 [2020-01-24]. PMID 27077655. doi:10.1371/journal.pone.0153526. 

外部鏈接编辑