# 帕德近似

${\displaystyle 1+x+x^{2}+x^{3}+\cdots }$只有在${\displaystyle -1時收斂，不如原函數廣泛。

## 定義

${\displaystyle R(x)={\frac {\sum _{j=0}^{m}a_{j}x^{j}}{1+\sum _{k=1}^{n}b_{k}x^{k}}}={\frac {a_{0}+a_{1}x+a_{2}x^{2}+\cdots +a_{m}x^{m}}{1+b_{1}x+b_{2}x^{2}+\cdots +b_{n}x^{n}}}}$

${\displaystyle {\begin{array}{rcl}f(0)&=&R(0)\\f'(0)&=&R'(0)\\f''(0)&=&R''(0)\\&\vdots &\\f^{(m+n)}(0)&=&R^{(m+n)}(0)\end{array}}}$

${\displaystyle [m/n]_{f}(x).\,}$

## 例子

### 正弦函數

${\displaystyle [6/6]_{\sin(x)}={\frac {(12671/4363920)*x^{5}-(2363/18183)*x^{3}+x}{1+(445/12122)*x^{2}+(601/872784)*x^{4}+(121/16662240)*x^{6}}}}$

${\displaystyle [6/6]_{\sin(x)}}$ 的6+6=12階泰勒級數展開為

${\displaystyle {x-(1/6)*x^{3}+(1/120)*x^{5}-(1/5040)*x^{7}+(1/362880)*x^{9}-(1/39916800)*x^{11}+O(x^{13})}}$

${\displaystyle \sin(x)}$ 的12階泰勒級數全同：

${\displaystyle \sin(x)\approx {x-(1/6)*x^{3}+(1/120)*x^{5}-(1/5040)*x^{7}+(1/362880)*x^{9}-(1/39916800)*x^{11}+O(x^{13})}}$

### 指數函數

${\displaystyle [5/5]_{exp(x)}={\frac {1+(1/9)*x^{2}+(1/2)*x+(1/72)*x^{3}+(1/1008)*x^{4}+(1/30240)*x^{5}}{1+(1/9)*x^{2}-(1/2)*x-(1/72)*x^{3}+(1/1008)*x^{4}-(1/30240)*x^{5}}}}$

${\displaystyle {1+x+(1/2)*x^{2}+(1/6)*x^{3}+(1/24)*x^{4}+(1/120)*x^{5}+(1/720)*x^{6}+(1/5040)*x^{7}+(1/40320)*x^{8}+(1/362880)*x^{9}+(1/3628800)*x^{10}+(23/914457600)*x^{11}+O(x^{12})}}$

${\displaystyle {1+x+(1/2)*x^{2}+(1/6)*x^{3}+(1/24)*x^{4}+(1/120)*x^{5}+(1/720)*x^{6}+(1/5040)*x^{7}+(1/40320)*x^{8}+(1/362880)*x^{9}+(1/3628800)*x^{10}+(1/39916800)*x^{11}+O(x^{12})}}$

${\displaystyle f:={\frac {1-\cos(2*x)^{2}}{1+\arctan(3*x)}}}$

${\displaystyle [3/3]_{f(x)}={\frac {(64/75)*x^{3}+4*x^{2}}{1+(241/75)*x+(148/75)*x^{2}-(1061/225)*x^{3}}}}$

### 雅可比橢圓函數 ${\displaystyle \operatorname {sn} (x;3)}$

${\displaystyle {\frac {-(9853969/39583665)*z^{5}-(1493060/2638911)*z^{3}+z}{1+(968375/879637)*z^{2}-(1167506/7916733)*z^{4}+(867043/2159109)*z^{6}}}}$

### 第一類 5 階貝塞爾函數 ${\displaystyle J_{5}(x)}$

${\displaystyle {\frac {-(107/28416000)*x^{7}+(1/3840)*x^{5}}{1+(151/5550)*x^{2}+(1453/3729600)*x^{4}+(1339/358041600)*x^{6}+(2767/120301977600)*x^{8}}}}$

### 誤差函數

${\displaystyle {\frac {(2/15)*(49140*x+3570*x^{3}+739*x^{5})}{(165*{\sqrt {\pi }}*x^{4}+1330*{\sqrt {\pi }}*x^{2}+3276*{\sqrt {\pi }})}}{}}$

### 菲涅耳積分 ${\displaystyle C(x)}$

${\displaystyle {\frac {(1/135)*(990791*x^{9}*\pi ^{4}-147189744*x^{5}*\pi ^{2}+8714684160*x)}{(1749*\pi ^{4}*x^{8}+523536*\pi ^{2}*x^{4}+64553216)}}}$

Maple中