佩尔数是一个自古以来就知道的整数数列,由递推关系定义,与斐波那契数类似。佩尔数呈指数增长,增长速率与白银比的幂成正比。它出现在2的算术平方根的近似值以及三角平方数的定义中,也出现在一些组合数学的问题中。

定义 编辑

佩尔数由以下的递推关系定义:

 

也就是说,佩尔数的数列从0和1开始,以后每一个佩尔数都是前面的数的两倍加上再前面的数。最初几个佩尔数是:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378…… (OEIS数列A000129)。

佩尔数也可以用通项公式来定义:

 

对于较大的n 的项起主要作用,而 的项则变得微乎其微。因此佩尔数大约与白银比 的幂成正比。

第三种定义是以下的矩阵公式:

 

从这些定义中,可以推出或证明许多恒等式;例如以下的恒等式,与斐波那契数的卡西尼恒等式类似:

 

这个恒等式是以上矩阵公式的直接结果(考虑矩阵的行列式)。

2的算术平方根的近似值 编辑

佩尔数出现在2的算术平方根有理数近似值中。如果两个大的整数xy佩尔方程的解:

 

那么它们的比 就是 的一个较精确的近似值。这种形式的近似值的数列是:

 

其中每一个分数的分母是佩尔数,分子则是这个数与前一个佩尔数的和。也就是说,佩尔方程的解具有 的形式。 是这些近似值中的第八个,在公元前3或4世纪就已经为印度数学家所知。公元前5世纪的古希腊数学家也知道这个近似值的数列;他们把这个数列的分母和分子称为“边长和直径数”,分子也称为“有理对角线”或“有理直径”。

这些近似值可以从 连分数展开式推出:

 

取这个展开式的有限个项,便可以产生 的一个近似值,例如:

 

素数和平方数 编辑

佩尔素数是既是佩尔数又是素数的数。最初几个佩尔素数是:

2, 5, 29, 5741, …… (OEIS数列A086383)。

与斐波那契素数相似,仅当n本身是素数时 才有可能是素数。

唯一的既是佩尔数又是平方数、立方数或任意整数次方的数是0, 1, 以及169 = 132

然而,佩尔数与三角平方数有密切的关系。它们出现在以下佩尔数的恒等式中:

 

等式的左面是平方数,等式的右面是三角形数,因此是三角平方数。

Santana和Diaz-Barrero在2006年证明了佩尔数与平方数之间的另外一个恒等式,并证明了从  的所有佩尔数的和总是平方数:

 

例如,从  的和是 ,是 的平方。 就是这个和的平方根:

1, 7, 41, 239, 1393, 8119, 47321, …… (OEIS数列A002315)。

毕氏数 编辑

 
边长为整数的直角三角形,其直角边几乎相等,由佩尔数引出。

如果一个直角三角形的边长为abc(必须满足毕氏定理a2+b2=c2),那么(a,b,c)称为毕氏数。Martin在1875年描述,佩尔数可以用来产生毕氏数,其中ab相差一个单位。这个毕氏数具有以下形式:

 

用这种方法产生的毕氏数的序列是:

(3,4,5), (20,21,29), (119,120,169), (696,697,985), ……

佩尔-卢卡斯数 编辑

佩尔-卢卡斯数由以下的递推关系定义:

 

也就是说,数列中的最初两个数都是2,后面每一个数都是前一个数的两倍加上再前面的一个数。这个数列的最初几个项是(OEIS数列A002203):2, 2, 6, 14, 34, 82, 198, 478……

佩尔-卢卡斯数的通项公式为:

 

这些数都是偶数,每一个数都是以上 的近似值中的分子的两倍。

参考文献 编辑

外部链接 编辑