格利泽486,又称为Wolf 437,是一颗位于处女座红矮星。表面温度约3340K。格利泽486的重元素浓度与太阳相似,金属丰度Fe/H 指数约为0.07。它被怀疑是一颗耀星[7],尽管在2019年没有发现任何耀斑[8]。这颗恒星的化学构成并不显著,与太阳丰度或金属含量略微一致[5]

Gliese 486

观测资料
历元 J2000
星座 处女座
星官
赤经 12h 47m 56.6249s[1]
赤纬 +09° 45′ 05.0319″[1]
视星等(V) 11.395
特性
演化阶段主序星
光谱分类M3.5V[2]
天体测定
径向速度 (Rv)19.106 km/s
自行 (μ) 赤经:−1008.267[3] mas/yr
赤纬:−460.034[3] mas/yr
视差 (π)123.776 ± 0.0329[3] mas
距离26.351 ± 0.007 ly
(8.079 ± 0.002 pc)
详细资料 [4]
质量0.323+0.015
M
半径0.328+0.011
R
亮度0.01210+0.00023
L
温度3340+54
K
金属量 [Fe/H]−0.15±0.13[5] dex
自转49.9+5.5
d[5]
自转速度 (v sin i)<2[6] km/s
年龄1-8[5] Gyr
其他命名
GJ 486、​HIP 62452、​Wolf 437、​TYC 882-1111-1、​2MASS J12475664+0945050[1]
参考数据库
SIMBAD资料

这颗恒星在色球层中有一个不起眼的磁场,约为1.6千高斯[6]。它自转非常缓慢,很可能非常古老,在运动学上属于古老的银河系薄盘[9]

截至2020年,未发现存在任何恒星伴星[10]

行星系统

编辑
 
艺术家想像中热超级地球--格利泽486 b的表面。

2021年,在紧密的圆形轨道上发现了一颗名为格利泽486 b的行星[4]。它代表了一类罕见的岩石系外行星[11][12]。截至2022年,没有检测到以氢气或蒸汽为主的大气层,尽管具有较高分子量的二级行星大气层仍有可能[13]

2022年8月,这个行星系统被列入第三个IAU100太阳系外世界命名活动项目命名的20个系统中[14]

格利泽486的行星系[4]
成员
(依恒星距离)
质量 半长轴
(AU)
轨道周期
()
离心率 倾角 半径
b 2.82+0.11
−0.12
 M
0.01734+0.00026
−0.00027
1.467119+0.000031
−0.000030
<0.05 88.4+1.1
−1.4
°
1.305+0.063
−0.067
 R

参考资料

编辑
  1. ^ 1.0 1.1 1.2 Wolf 437. SIMBAD. 斯特拉斯堡天文资料中心. 
  2. ^ Bozhinova, I.; Helling, Ch.; Scholz, A., Planetary host stars: Evaluating uncertainties in cool model atmospheres, Monthly Notices of the Royal Astronomical Society, 2014, 450: 160–182, Bibcode:2015MNRAS.450..160B, arXiv:1405.5416 , doi:10.1093/mnras/stv613 
  3. ^ 3.0 3.1 3.2 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533 . doi:10.1051/0004-6361/202039657 .  已忽略未知参数|collaboration= (帮助) (勘误: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  4. ^ 4.0 4.1 4.2 Trifonov, T.; et al, A nearby transiting rocky exoplanet that is suitable for atmospheric investigation, Science, 2021, 371 (6533): 1038–1041, Bibcode:2021Sci...371.1038T, PMID 33674491, S2CID 232124642, arXiv:2103.04950 , doi:10.1126/science.abd7645 
  5. ^ 5.0 5.1 5.2 5.3 Caballero, J. A.; et al, A detailed analysis of the Gl 486 planetary system, Astronomy & Astrophysics, 2022, 665: A120, Bibcode:2022A&A...665A.120C, S2CID 249889232, arXiv:2206.09990 , doi:10.1051/0004-6361/202243548 
  6. ^ 6.0 6.1 Moutou, Claire; Hébrard, Élodie M.; Morin, Julien; Malo, Lison; Fouqué, Pascal; Torres-Rivas, Andoni; Martioli, Eder; Delfosse, Xavier; Artigau, Étienne; Doyon, René, SPIRou input catalogue: Activity, rotation and magnetic field of cool dwarfs, Monthly Notices of the Royal Astronomical Society, 2017, 472 (4): 4563–4586, Bibcode:2017MNRAS.472.4563M, arXiv:1709.01650 , doi:10.1093/mnras/stx2306 
  7. ^ O'Donoghue, D.; Koen, C.; Kilkenny, D.; Stobie, R. S.; Koester, D.; Bessell, M. S.; Hambly, N.; MacGillivray, H., The DA+d Me eclipsing binary EC13471-1258: its cup runneth over ... Just, Monthly Notices of the Royal Astronomical Society, 2003, 345 (2): 506–528, Bibcode:2003MNRAS.345..506O, S2CID 17408072, arXiv:astro-ph/0307144 , doi:10.1046/j.1365-8711.2003.06973.x 
  8. ^ Vida, Krisztián; Leitzinger, Martin; Kriskovics, Levente; Seli, Bálint; Odert, Petra; Kovács, Orsolya Eszter; Korhonen, Heidi; Van Driel-Gesztelyi, Lidia, The quest for stellar coronal mass ejections in late-type stars, Astronomy & Astrophysics, 2019, 623: A49, S2CID 119095055, arXiv:1901.04229 , doi:10.1051/0004-6361/201834264 
  9. ^ Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; West, Andrew A.; Zhang, Jiahao, Rotation and Magnetic Activity in a Sample of M-Dwarfs, The Astronomical Journal, 2010, 139 (2): 504, Bibcode:2010AJ....139..504B, S2CID 121835145, doi:10.1088/0004-6256/139/2/504 
  10. ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M., Robo-AO M-dwarf Multiplicity Survey: Catalog, The Astronomical Journal, 2020, 159 (4): 139, Bibcode:2020AJ....159..139L, S2CID 210718832, arXiv:2001.05988 , doi:10.3847/1538-3881/ab6ef1 
  11. ^ Hot Super-Earth Discovered 26 Light-Years Away. [2023-04-11]. (原始内容存档于2021-12-09). 
  12. ^ Newfound exoplanet could be 'Rosetta Stone' for studies of alien atmospheres. [2023-04-11]. (原始内容存档于2023-03-30). 
  13. ^ Ridden-Harper, Andrew; Nugroho, Stevanus; Flagg, Laura; Jayawardhana, Ray; Turner, Jake D.; Ernst de Mooij; MacDonald, Ryan; Deibert, Emily; Tamura, Motohide; Kotani, Takayuki; Hirano, Teruyuki; Kuzuhara, Masayuki; Omiya, Masashi; Kusakabe, Nobuhiko, High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b, 2022, arXiv:2212.11816  
  14. ^ List of ExoWorlds 2022. nameexoworlds.iau.org. IAU. 8 August 2022 [27 August 2022]. (原始内容存档于2023-03-08).