䥑
䥑(拼音:mài,注音:ㄇㄞˋ,粤拼:mak6,音同「麥」;英語:Meitnerium),是一種人工合成的化學元素,其化學符號为Mt,原子序數为109。䥑是一種放射性極強的超重元素及錒系後元素,其所有同位素的半衰期都很短,非常不穩定,其中壽命最長的是278Mt,半衰期僅約4.5秒。䥑是9族最重的元素,但由於沒有足夠穩定的同位素,因此目前未能通過化學實驗來驗證䥑的性質是否符合元素週期律。
概述 编辑
外部视频链接 | |
---|---|
基于澳大利亚国立大学的计算,核聚变未成功的可视化[8] |
超重元素[a]的原子核是在两个不同大小[b]的原子核的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[14]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[15]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[15][16]如果聚变发生了,两个原子核产生的一个原子核会处于被称为複合原子核的激发态。为了达到更稳定的状态,这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量。[c]这个过程会在原子核碰撞后的10−16秒发生,产生更稳定的原子核。[17][d]
粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[20]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]并转移到会停住原子核的半导体探测器中。撞击至探測器時的确切位置、能量和到达时间將會被記錄下來。[20]这个转移需要10−6秒的时间,意即这个原子核需要存在这么长的时间才能被检测到。[23]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[20]
原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子(质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[24]超重元素理论预测[25]和已观测到[26]的主要衰变方式,也就是α衰变和自发裂变,都是这种排斥引起的。[f]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]
嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。物理学家分析这些数据并试图得出结论,確認它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的效應没有其他解释,就可能在解释数据时出现错误。[i]
歷史 编辑
發現 编辑
此元素在1982年8月29日由彼得·安布鲁斯特和哥特佛萊德·明岑貝格領導的研究團隊所合成出來,此團隊位於德國黑森邦達姆施塔特的重離子研究所。[38] 他們利用鐵-58離子轟擊鉍-209合成了266Mt的單一原子:
命名 编辑
根据IUPAC元素系统命名法,䥑的舊稱是Unnilennium,來自1、0、9的拉丁語寫法。
1997年8月27日IUPAC正式對國際上分歧較大的101至109號元素的重新英文定名中,Meitnerium正式作為109號元素的命名,以紀念奧地利、瑞典原子物理學家莉澤·邁特納(Lise Meitner)。[39]
全國科學技術名詞化學名詞審定委員會據此於1998年7月8日重新审定、公佈101至109號元素的中文命名,其中首次給出109號元素中文名:「䥑」(mài,音同「麥」)[40][41][42]。
未來實驗 编辑
日本理化學研究所的一個團隊已表示有計劃研究以下反應:
同位素與核特性 编辑
同位素 | 半衰期[j] | 衰变方式 | 发现年份 | 发现方法 | |
---|---|---|---|---|---|
数值 | 来源 | ||||
266Mt | 1.2 ms | [43] | α, SF | 1982 | 209Bi(58Fe,n) |
268Mt | 27 ms | [43] | α | 1994 | 272Rg(—,α) |
270Mt | 6.3 ms | [43] | α | 2004 | 278Nh(—,2α) |
274Mt | 640 ms | [44] | α | 2006 | 282Nh(—,2α) |
275Mt | 20 ms | [44] | α | 2003 | 287Mc(—,3α) |
276Mt | 620 ms | [44] | α | 2003 | 288Mc(—,3α) |
277Mt | 5 ms | [45] | SF | 2012 | 293Ts(—,4α) |
278Mt | 4.5 s | [45] | α | 2010 | 294Ts(—,4α) |
282Mt[k] | 1.1 min | [46] | α | 1998 | 290Fl(e−,νe2α) |
目前已知的䥑同位素共有8個,質量數分別為266、268、270和274-278,全部都具有極高的放射性,半衰期極短,非常不穩定,且質量數越大的同位素穩定性越高,其中最長壽的同位素為䥑-278,半衰期約4.5秒,也是目前發現最重的䥑同位素。未經確認的同位素䥑-282可能具有更長的半衰期,為67秒。除了䥑-278外,其他壽命較長的同位素有䥑-276和䥑-274,半衰期分別為0.45秒和0.44秒,剩下5種同位素的半衰期都在20毫秒以下。大多數䥑同位素主要發生α衰變,有些則會進行自發裂變。[47]
䥑-268和䥑-270具有已知但未經證實的同核異構體。[47]
核合成 编辑
能產生Z=109复核的目標、發射體組合 编辑
下表列出各種可用以產生109號元素的目標、發射體組合。
目標 | 發射體 | CN | 結果 |
---|---|---|---|
208Pb | 59Co | 267Mt | 反應成功 |
209Bi | 58Fe | 267Mt | 反應成功 |
232Th | 41K | 273Mt | 尚未嘗試 |
231Pa | 40Ar | 271Mt | 尚未嘗試 |
238U | 37Cl | 275Mt | 至今失敗 |
237Np | 36S | 275Mt | 尚未嘗試 |
244Pu | 31P | 275Mt | 尚未嘗試 |
242Pu | 31P | 273Mt | 尚未嘗試 |
243Am | 30Si | 273Mt | 尚未嘗試 |
248Cm | 27Al | 275Mt | 尚未嘗試 |
250Cm | 27Al | 277Mt | 尚未嘗試 |
249Bk | 26Mg | 275Mt | 尚未嘗試 |
249Cf | 23Na | 272Mt | 尚未嘗試 |
251Cf | 23Na | 274Mt | 尚未嘗試 |
254Es | 22Ne | 276Mt | 至今失敗 |
作為衰變產物 编辑
科學家也曾在更重元素的衰變產物中發現䥑的同位素。
蒸發殘留 | 觀測到的䥑同位素 |
---|---|
294Ts | 278Mt |
288Mc | 276Mt |
287Mc | 275Mt |
282Nh | 274Mt |
278Nh | 270Mt |
272Rg | 268Mt |
同位素發現時序 编辑
同位素 | 發現年份 | 核反應 |
---|---|---|
266Mt | 1982年 | 209Bi(58Fe,n)[38] |
267Mt | 未知 | |
268Mt | 1994年 | 209Bi(64Ni,n)[48] |
269Mt | 未知 | |
270Mt | 2004年 | 209Bi(70Zn,n)[49] |
271Mt | 未知 | |
272Mt | 未知 | |
273Mt | 未知 | |
274Mt | 2006年 | 237Np(48Ca,3n) |
275Mt | 2003年 | 243Am(48Ca,4n)[50] |
276Mt | 2003年 | 243Am(48Ca,3n) |
277Mt | 未知 | |
278Mt | 2009年 | 249Bk(48Ca,3n)[51] |
核異構體 编辑
270Mt 编辑
科學家在278Nh的衰變鏈中確定探測到兩個270Mt原子。這兩個原子擁有非常不同的衰期和衰變能量,並來自兩個不同的274Rg同核異構體。第一種同核異構體經過α衰變,能量為10.03 MeV,半衰期為7.16毫秒;另一種的半衰期為1.63秒,但衰變能量未知。由於缺乏數據,要對這些同核異構體進行實際的能級分配,必需作進一步的研究。
268Mt 编辑
多個實驗的結果顯示,268Mt的α衰變光譜是非常複雜的。從268Mt釋放出的α粒子能量有10.28、10.22和10.10 MeV,半衰期也分別為42毫秒、21毫秒和102毫秒。長半衰期的一次衰變事件來自同核異能態。科學家正在研究其他兩個半衰期差距的原因。由於缺乏數據,要對這些同核異構體進行實際的能級分配,必需作進一步的研究。
同位素產量 编辑
下表列出直接合成䥑的聚變核反應的截面和激發能量。粗體數據代表從激發函數算出的最大值。+代表觀測到的出口通道。
冷聚變 编辑
發射體 | 目標 | CN | 1n | 2n | 3n |
---|---|---|---|---|---|
58Fe | 209Bi | 267Mt | 7.5 pb | ||
59Co | 208Pb | 267Mt | 2.6 pb, 14.9 MeV |
理論計算 编辑
下表列出各種目標-發射體組合,並給出最高的預計產量。
HIVAP = 重離子汽化統計蒸發模型; σ = 截面
目標 | 發射體 | CN | 通道(產物) | σmax | 模型 | 參考資料 |
---|---|---|---|---|---|---|
243Am | 30Si | 273Mt | 3n (270Mt) | 22 pb | HIVAP | [52] |
243Am | 28Si | 271Mt | 4n (267Mt) | 3 pb | HIVAP | [52] |
249Bk | 26Mg | 275Mt | 4n (271Mt) | 9.5 pb | HIVAP | [52] |
254Es | 22Ne | 276Mt | 4n (272Mt) | 8 pb | HIVAP | [52] |
254Es | 20Ne | 274Mt | 4-5n (270,269Mt) | 3 pb | HIVAP | [52] |
化學屬性 编辑
推算的化學屬性 编辑
物理特性 编辑
根據週期表的趨勢,䥑應該是一種高密度金屬,密度大約為37.4 g/cm3[1](鈷:8.9,銠:12.5,銥:22.5),熔點也很高,約為2600至2900°C(鈷:1480,銠:1966,銥:2454)。它的耐腐蝕性可能很高,甚至比銥更高。
氧化態 编辑
䥑預計將是6d系過渡金屬的第7個元素,也是週期表中9族最重的成員,位於鈷、銠和銥的下面。較重的兩個9族元素氧化態為+6,而銥最穩定的為+4和+3態,銠則呈穩定的+3態。因此預期䥑會形成穩定的+3狀態,但也可能有穩定的+4和+6態。
化學特性 编辑
䥑應可形成六氟化物MtF6。這氟化物預計將較六氟化銥更加穩定,因為同族元素從上到下的+6氧化態越來越穩定。
在與氧發生反應時,銠主要形成Rh2O3 ,而銥會被氧化為+4態的IrO2。因此䥑可能會形成二氧化物MtO2。
9族元素的+3態常見於與鹵素直接反應所形成的三鹵化物(氟化物除外)。因此䥑應可形成MtCl3、MtBr3和MtI3。
注释 编辑
- ^ 在核物理学中,如果一个元素有高原子序,就可以被称为重元素,例如82号元素铅。“超重元素”这一词通常指原子序大于103的元素(尽管也有其它的定义,例如原子序大于100[9]或112。[10]有时这一词和锕系后元素是同义词,将超重元素的上限定在还未发现的超锕系元素的开始。)[11]
- ^ 2009年,由尤里·奥加涅相引领的团队发表了他们通过对称的136Xe + 136Xe反应,尝试合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb。[12]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
-11 pb。[13] - ^ 激发能量越大,复合原子核放出的中子就越多。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。[17]
- ^ IUPAC/IUPAP联合工作小组定义原子核只有10−14秒内不衰变,才能被认为化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间,[18]也是复合原子核的寿命上限。[19]
- ^ 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标。分离器中包含电场和磁场,若粒子速度恰好,則電場與磁場对运动粒子的影响会剛好抵消。[21]飞行时间质谱法和反冲能量的测量也有助分离,两者结合可以估计原子核的质量。[22]
- ^ 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[27]
- ^ 超重元素的原子核的质量通常无法直接测量,所以它是根据另一个原子核的质量间接计算得出的。[28]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[29]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[30]
- ^ 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的,[31]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[32]劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[19]因此他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[31]
- ^ 举个例子,102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定。[33]早先没有关于该元素发现的明确声明,所以由它的瑞典、美国、英国发现者命名为nobelium。后来证明这个元素的鉴定是错误的。[34]第二年,劳伦斯伯克利国家实验室无法重现瑞典的结果,而是宣布他们合成了该元素,但后来也被驳回。[34]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[35]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[36]由于其广泛使用,nobelium这个名称仍然保持不变。[37]
- ^ 不同的来源会给出不同的数值,所以这里列出最新的数值。
- ^ 未确认的同位素
參考資料 编辑
- ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (编). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
- ^ 2.0 2.1 2.2 Östlin, A.; Vitos, L. First-principles calculation of the structural stability of 6d transition metals. Physical Review B. 2011, 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
- ^ Thierfelder, C.; Schwerdtfeger, P.; Heßberger, F. P.; Hofmann, S. Dirac-Hartree-Fock studies of X-ray transitions in meitnerium. The European Physical Journal A. 2008, 36 (2): 227. Bibcode:2008EPJA...36..227T. doi:10.1140/epja/i2008-10584-7.
- ^ Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties. Russian Journal of Coordination Chemistry. 2004, 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
- ^ Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian. How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX. ChemPhysChem. 2010, 11 (4): 865–9. PMID 20127784. doi:10.1002/cphc.200900910.
- ^ Chemical Data. Meitnerium - Mt (页面存档备份,存于互联网档案馆), Royal Chemical Society
- ^ Saito, Shiro L. Hartree–Fock–Roothaan energies and expectation values for the neutral atoms He to Uuo: The B-spline expansion method. Atomic Data and Nuclear Data Tables. 2009, 95 (6): 836. Bibcode:2009ADNDT..95..836S. doi:10.1016/j.adt.2009.06.001.
- ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061 (英语).
- ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始内容存档于2021-05-15) (英语).
- ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11) (英语).
- ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语).
- ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语).
- ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [2012-10-20]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于2015-06-07) (英语).
- ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始内容存档于2019-12-11) (英语).
- ^ 15.0 15.1 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容存档于2020-04-23) (俄语).
- ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始内容存档于2020-03-17) (英语).
- ^ 17.0 17.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927 (英语).
- ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容存档 (PDF)于2021-10-11) (英语).
- ^ 19.0 19.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-28]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容存档于2021-11-27) (英语).
- ^ 20.0 20.1 20.2 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始内容存档于2020-04-21) (英语).
- ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
- ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
- ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420 (1): 3. Bibcode:2013JPhCS.420a2001Z. ISSN 1742-6588. arXiv:1207.5700 . doi:10.1088/1742-6596/420/1/012001.
- ^ Beiser 2003,第432頁.
- ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320 (英语).
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Beiser 2003,第439頁.
- ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容存档于2021-11-28) (英语).
- ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语).
- ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始内容存档于2021-11-28) (英语).
- ^ 31.0 31.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始内容存档于2021-11-28) (英语).
- ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07] (俄语). Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语).
- ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始内容存档于2021-03-08) (英语).
- ^ 34.0 34.1 Kragh 2018,第38–39頁.
- ^ Kragh 2018,第40頁.
- ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始内容存档 (PDF)于2013-11-25) (英语).
- ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容存档 (PDF)于2021-10-11) (英语).
- ^ 38.0 38.1 Münzenberg, G.; Armbruster, P.; Heßberger, F. P.; Hofmann, S.; Poppensieker, K.; Reisdorf, W.; Schneider, J. H. R.; Schneider, W. F. W.; Schmidt, K.-H. Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109. Zeitschrift für Physik A. 1982, 309 (1): 89. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157.
- ^ Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471.
- ^ 中国化学会无机化学名词小组修订. 无机化学命名原则 : 1980, 统一书号:13031·2078. 1982-12: 4-5 [2020-11-10]. (原始内容存档于2021-09-22).
- ^ 刘路沙. 101—109号元素有了中文定名. 光明网. 光明日报. [2020-11-10]. (原始内容存档于2020-11-10).
- ^ 贵州地勘局情报室摘于《中国地质矿产报》(1998年8月13日). 101~109号化学元素正式定名. 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始内容存档于2020-12-03).
- ^ 43.0 43.1 43.2 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. The NUBASE2016 evaluation of nuclear properties (PDF). Chinese Physics C. 2017, 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- ^ 44.0 44.1 44.2 Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. New isotope 286Mc produced in the 243Am+48Ca reaction. Physical Review C. 2022, 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. S2CID 254435744. doi:10.1103/PhysRevC.106.064306.
- ^ 45.0 45.1 Oganessian, Y.T. Super-heavy element research. Reports on Progress in Physics. 2015, 78 (3): 036301. Bibcode:2015RPPh...78c6301O. PMID 25746203. S2CID 37779526. doi:10.1088/0034-4885/78/3/036301.
- ^ S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, H. G. Burkhard, L. Dahl, K. Eberhardt, R. Grzywacz, J. H. Hamilton, R. A. Henderson, J. M. Kenneally, B. Kindler, I. Kojouharov, R. Lang, B. Lommel, K. Miernik, D. Miller, K. J. Moody, K. Morita, K. Nishio, A. G. Popeko, J. B. Roberto, J. Runke, K. P. Rykaczewski, S. Saro, C. Scheidenberger, H. J. Schött, D. A. Shaughnessy, M. A. Stoyer, P. Thörle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, A. V. Yeremin. Review of even element super-heavy nuclei and search for element 120. The European Physical Journal A. 2016-06, 52 (6) [2023-03-30]. ISSN 1434-6001. doi:10.1140/epja/i2016-16180-4 (英语).
- ^ 47.0 47.1 Sonzogni, Alejandro. Interactive Chart of Nuclides. National Nuclear Data Center: Brookhaven National Laboratory. [2008-06-06]. (原始内容存档于March 7, 2018).
- ^ 詳見錀
- ^ 詳見鉨
- ^ 詳見镆
- ^ Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; Henderson, R. A. Synthesis of a New Element with Atomic Number Z=117. Physical Review Letters. 2010, 104. Bibcode:2010PhRvL.104n2502O. PMID 20481935. doi:10.1103/PhysRevLett.104.142502.
- ^ 52.0 52.1 52.2 52.3 52.4 Wang Kun; et al. A Proposed Reaction Channel for the Synthesis of the Superheavy Nucleus Z = 109. Chinese Physics Letters. 2004, 21 (3): 464. Bibcode:2004ChPhL..21..464W. arXiv:nucl-th/0402065 . doi:10.1088/0256-307X/21/3/013.
外部連結 编辑
- 元素䥑在洛斯阿拉莫斯国家实验室的介紹(英文)
- EnvironmentalChemistry.com —— 䥑(英文)
- 元素䥑在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素䥑在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – 䥑(英文)