打开主菜单

原子序数为25的化学元素

是原子序為25的化學元素,其元素符號為Mn。錳不會以元素的形式存在於自然界中,它經常以與所形成的礦物形式被發現。錳是重要工業用合金所使用的過渡元素,特別是用於不銹鋼的材料。

錳   25Mn
氫(非金屬)
氦(惰性氣體)
鋰(鹼金屬)
鈹(鹼土金屬)
硼(類金屬)
碳(非金屬)
氮(非金屬)
氧(非金屬)
氟(鹵素)
氖(惰性氣體)
鈉(鹼金屬)
鎂(鹼土金屬)
鋁(貧金屬)
矽(類金屬)
磷(非金屬)
硫(非金屬)
氯(鹵素)
氬(惰性氣體)
鉀(鹼金屬)
鈣(鹼土金屬)
鈧(過渡金屬)
鈦(過渡金屬)
釩(過渡金屬)
鉻(過渡金屬)
錳(過渡金屬)
鐵(過渡金屬)
鈷(過渡金屬)
鎳(過渡金屬)
銅(過渡金屬)
鋅(過渡金屬)
鎵(貧金屬)
鍺(類金屬)
砷(類金屬)
硒(非金屬)
溴(鹵素)
氪(惰性氣體)
銣(鹼金屬)
鍶(鹼土金屬)
釔(過渡金屬)
鋯(過渡金屬)
鈮(過渡金屬)
鉬(過渡金屬)
鎝(過渡金屬)
釕(過渡金屬)
銠(過渡金屬)
鈀(過渡金屬)
銀(過渡金屬)
鎘(過渡金屬)
銦(貧金屬)
錫(貧金屬)
銻(類金屬)
碲(類金屬)
碘(鹵素)
氙(惰性氣體)
銫(鹼金屬)
鋇(鹼土金屬)
鑭(鑭系元素)
鈰(鑭系元素)
鐠(鑭系元素)
釹(鑭系元素)
鉕(鑭系元素)
釤(鑭系元素)
銪(鑭系元素)
釓(鑭系元素)
鋱(鑭系元素)
鏑(鑭系元素)
鈥(鑭系元素)
鉺(鑭系元素)
銩(鑭系元素)
鐿(鑭系元素)
鎦(鑭系元素)
鉿(過渡金屬)
鉭(過渡金屬)
鎢(過渡金屬)
錸(過渡金屬)
鋨(過渡金屬)
銥(過渡金屬)
鉑(過渡金屬)
金(過渡金屬)
汞(過渡金屬)
鉈(貧金屬)
鉛(貧金屬)
鉍(貧金屬)
釙(貧金屬)
砈(類金屬)
氡(惰性氣體)
鍅(鹼金屬)
鐳(鹼土金屬)
錒(錒系元素)
釷(錒系元素)
鏷(錒系元素)
鈾(錒系元素)
錼(錒系元素)
鈽(錒系元素)
鋂(錒系元素)
鋦(錒系元素)
鉳(錒系元素)
鉲(錒系元素)
鑀(錒系元素)
鐨(錒系元素)
鍆(錒系元素)
鍩(錒系元素)
鐒(錒系元素)
鑪(過渡金屬)
𨧀(過渡金屬)
𨭎(過渡金屬)
𨨏(過渡金屬)
𨭆(過渡金屬)
䥑(預測為過渡金屬)
鐽(預測為過渡金屬)
錀(預測為過渡金屬)
鎶(過渡金屬)
鉨(預測為貧金屬)
鈇(貧金屬)
鏌(預測為貧金屬)
鉝(預測為貧金屬)
鿬(預測為鹵素)
鿫(預測為惰性氣體)
-



外觀
金屬:銀色
銀色金屬光澤
概況
名稱·符號·序數 錳(Manganese)·Mn·25
元素類別 過渡金屬
·週期· 7 ·4·d
標準原子質量 54.938045(5)
電子排布

[] 4s2 3d5
2, 8, 13, 2

錳的电子層(2, 8, 13, 2)
歷史
發現 卡尔·威廉·舍勒(1774年)
分離 約翰·戈特利布·甘恩(1774年)
物理性質
物態 固態
密度 (接近室温
7.21 g·cm−3
熔點時液體密度 5.95 g·cm−3
熔點 1519 K,1246 °C,2275 °F
沸點 2334 K,2061 °C,3742 °F
熔化熱 12.91 kJ·mol−1
汽化熱 221 kJ·mol−1
比熱容 26.32 J·mol−1·K−1

蒸氣壓

壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 1228 1347 1493 1691 1955 2333
原子性質
氧化態 7, 6, 5, 4, 3, 2, 1, -1, -2, -3 (?)
(酸性,鹼性或兩性
(取決於氧化狀態))
電負性 1.55(鲍林标度)
電離能

第一:717.3 kJ·mol−1
第二:1509.0 kJ·mol−1
第三:3248 kJ·mol−1

更多
原子半徑 127 pm
共價半徑 139±5(低自旋),161±8(高自旋) pm
雜項
晶體結構 體心立方
磁序 順磁性
電阻率 (20 °C)1.44 µΩ·m
熱導率 7.81 W·m−1·K−1
膨脹係數 (25 °C)21.7 µm·m−1·K−1
聲速(細棒) (20 °C)5150 m·s−1
楊氏模量 198 GPa
體積模量 120 GPa
莫氏硬度 6.0
布氏硬度 196 MPa
CAS號7439-96-5
最穩定同位素

主条目:錳的同位素

同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
52Mn 合成 5.6 d ε 52Cr
β+ 0.575 52Cr
γ 0.7, 0.9, 1.4
53Mn 痕量 3.74×106 ε 53Cr
54Mn syn 312天 ε 1.377 54Cr
γ 0.834
55Mn 100% 穩定,帶30個中子

歷史上,錳的名稱來自生產軟錳礦(pyrolusiteand)以及其他黑色礦物的希臘馬格尼西亞(Magnesia in Greece)地區,這個地區的名稱來自其生產鎂礦(magnesium)以及磁鐵礦(iron ore magnetite)。到了大約18世紀中葉時,瑞典裔德國科學家卡爾•威廉•舍勒已經可以利用軟錳礦製造氯氣。這時,舍勒和其他人已經知道軟錳礦(這時還不知道此為二氧化錳)含有其他未被發現的元素,但是他們沒辦法分離出這個新元素。直到1774年,約翰•戈特利布•甘恩是第一個可以從具有不純的金屬樣品分離出錳元素的人,他成功的利用還原氧化物(含二氧化錳的礦物)得到了錳。

錳磷酸化可以用來防止鋼鐵生鏽或者腐蝕。錳離子可以用於各種顏色的工業染劑,離子的顏色決定於其不同的其氧化數(oxidation state)。鹼金屬過錳酸鹽或者鹼土族過錳酸鹽是很強的氧化劑。二氧化錳可以用在碳鋅電池或者鹼金屬電池中的陰極材料(電子接受者)。

生物上,錳二價離子為具有很多種功能的多樣性酵素輔因子(cofactor)具有錳元素的酵素(manganese enzymes) 特別為必須處理元素的生物體內去除造成毒性的過氧化自由基的要素。錳同樣作用於光合作用植物中氧元素進化錯合物(oxygen-evolving complex)雖然錳是生物體內的必須稀有礦物質,然而,當生物體內的錳濃度過高時也可能造成神經毒性。特別是經過呼吸作用,將造成錳中毒(manganism),這是一種在哺乳動物中可能會發生的不可逆神經傷害的情況。

目录

性质编辑

物理性質编辑

錳是銀灰色金屬,性堅而脆、難熔、易被氧化。錳金屬及其離子皆為順磁物質。錳在空氣中會緩慢失去光澤,在含氧的水中會氧化(像鐵生鏽)。

化合物编辑

锰的氧化数有-3至+7,其中以氧化数+2、+4和+7的化合物最重要。

Mn2+最稳定,呈粉红色,不容易被氧化,也不容易被还原硫酸锰MnSO4)、氯化锰MnCl2)等属于这氧化数。MnO
4
MnO2有强氧化性。

氧化数+7的高锰酸盐MnO
4
)呈紫色,多数是强氧化剂,如高锰酸钾高锰酸钠高锰酸钡等。

在酸性溶液中,Mn3+MnO2−
4
均易发生歧化反应

2 Mn3+ + 2 H2OMn2+ + MnO2↓ + 4 H+
3 MnO2−
4
+ 4 H+ → 2 MnO
4
+ MnO2↓ + 2 H2O

在碱性溶液中,Mn(OH)2不稳定,易被空气中的氧气氧化为MnO2MnO2−
4
也能发生歧化反应,但反应不如在酸性溶液中进行得完全。

锰的氧化物及其水合物酸碱性的递变规律,是过渡金属中最典型的:随锰的氧化数的升高,酸性逐渐增强。[2]

锰的氧化物 锰的氢氧化物 酸碱性
MnO(绿) Mn(OH)2(白) 碱性
Mn2O3(棕) Mn(OH)3(棕) 弱碱性
MnO2(黑) Mn(OH)4(棕黑) 两性
不存在(绿) 酸性
Mn2O7(绿) HMnO4(紫红) 强酸性
锰的氧化数[3]
0 Mn2(CO)10
+1 MnC5H4CH3(CO)3
+2 MnCl2, MnCO3, MnO
+3 MnF3, Mn(OAc)3, Mn2O3
+4 MnO2
+5 K3MnO4
+6 K2MnO4
+7 KMnO4, Mn2O7
主要的氧化数以粗体显示。

同位素编辑

錳在正常狀況下只存在一個穩定同位素——55Mn,此外有二十四個放射性同位素依照原子量從44到69。而具放射性中最穩定的包含半衰期分別為370萬年、312.3天、5.591天的53Mn、54Mn和52Mn,剩餘的半衰期皆少於三小時,而其中大部分都少於一分鐘。在最大量且穩定的錳同位素55Mn,主要的衰變方式電子捕獲,而在其後者主要為β衰變

鐵系元素被認為是超新星爆炸前不久合成巨大恆星的物質,而錳正是其一。宇宙射線衝擊會產生53Mn,而53Mn經過半衰期370萬年會衰變成53Cr,因為其相對較短的半衰期,所以53Mn較為稀有。錳同位素的含量與同位素的含量有關,因此已經在同位素地質學及放射性估年法上有所應用。錳和鉻的同位素比強化了26Al和107Pd太陽系早期歷史的證明。許多隕石中53Cr/52Cr和Mn/Cr間比例的差異顯示出最初53Mn/55Mn的比例,因此指出相異行星中錳和鉻同位素的組成,必定源自於不同的53Cr衰變過程。所以53Mn提供了太陽系合併前核合成過程近一步的證明。

发现编辑

在歷史上,錳的名字(manganese)源自於軟錳礦(pyrolusite)及其他來自希臘馬格尼西亞州(Magnesia in Greece)的黑色礦物。

18世紀後半瑞典化學家舍勒(Carl Wilhelm Scheele)用軟錳礦來生成氯氣時,尚未知道是二氧化錳,只認為它是一種未知金屬氧化物,但Scheele並沒能成功分離此金屬。蓋恩(Johan Gottlieb Gahn)1774年才利用把兩個還原,成功的分離出錳。並將之命名為Manganese(錳),其拉丁語:magnes,意即「具磁性的」(但只有經過特殊處理的錳才會具有磁性),及元素符號Mn亦從之而來。人們早在1913年就已知錳是組成動物的重要元素之一,但直到1931年才經由動物實驗得知和錳有關的症狀。

来源编辑

锰在地壳含量约1000ppm(0.1%),居元素分布序列中的第12位。

錳會以软锰矿MnO2硬锰矿(Ba.H2O)2Mn5O10)和菱锰矿MnCO3)等形式存在于自然界中。

制取编辑

将软锰矿用铝盒盛放,下方有导管连接,使用氯酸钾和镁条进行加热,使铝化为三氧化二铝(高温耐火材料),软锰矿分解为单质锰和氧气,单质锰融化顺导管导出。

用途编辑

冶金工业中用以制造特种钢,在钢铁生产上用锰铁合金作为去硫剂和去氧剂。

此外锰也用作合金电池等。二氧化锰MnO2)用作催化剂棕色颜料高锰酸钾KMnO4)用作氧化剂消毒剂

不鏽鋼上用磷酸錳處理可以防鏽及防蝕。工業上會使用不同氧化態的錳離子當作不同顏色的染料。含有鹼金屬鹼土族離子過錳酸鹽類是強氧化劑。在碳鋅電池鹼性電池中,二氧化錳會被當作陰極使用。 在生物學中,錳離子可在多種的酵素中擔任輔因子的角色。錳酵素對組織超氧自由基的解毒,清除元素態原子非常重要。錳也會在光合植物的氧釋放複合體中作用。雖然目前已知所有的有機生命體皆需要微量的錳,但其過量卻會變成神經毒素。尤其過度吸入可以導致錳中毒,有時會造成不可逆的神經危害。

對人體的影響编辑

危险性
GHS危险性符号
none
GHS提示词 none
H-术语 H401
P-术语 P273, P501[4]
NFPA 704
0
0
0
 
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。

和其他较普遍的金属相比,锰的毒性较低。[5]

錳是身體所必需的微量元素之一,可構成生物體中具重要生理功能之輔酶,每日攝取約3-9mg。 具有以下之功能:

  1. 促進骨骼之發育以及生長
  2. 維持腦功能之正常運作
  3. 維持糖以及脂肪之正常代謝
  4. 維持細胞粒線體之完整
  5. 構成輔酶

由於粒線體需要錳,所以錳在粒線體多之組織含量較高,常見於骨骼肝臟腎臟胰臟。然而過量錳之攝取依然會對生物有所影響(神经退行性疾病),常見於職業中,其發生原因為吸入含錳濃度高之錳煙及錳塵。

参考文献编辑

  1. ^ Weast, Robert. CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. 1984: E110. ISBN 0-8493-0464-4. 
  2. ^ 《无机化学》第四版.高等教育出版社.P392. 13.4.2 锰的重要化合物
  3. ^ Schmidt, Max. VII. Nebengruppe. Anorganische Chemie II.. Wissenschaftsverlag. 1968: 100–109 (德语). 
  4. ^ https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=266167&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F266167%3Flang%3Den
  5. ^ Hasan, Heather. Manganese. The Rosen Publishing Group. 2008: 31. ISBN 978-1-4042-1408-8. 

外部連結编辑