錀
錀(拼音:lún,注音:ㄌㄨㄣˊ,粤拼:leon4,音同「伦」;英語:Roentgenium),是一種人工合成的化學元素,其化學符號为Rg,原子序數为111。錀是一種放射性極強的超重元素及錒系後元素,不出現在自然界中,只能在實驗室內以粒子加速器少量合成。所有錀同位素的半衰期都很短,非常不穩定,其最重也最長壽的已知同位素为錀-282,其半衰期约為100秒。未經證實的同位素錀-286可能具有更長的半衰期,約為10.7分鐘。[5]目前科學家僅成功合成出很少的錀原子,除了基礎科學研究之外,錀沒有任何實際應用。[6]
錀是週期表中11族的成員,所以其性质预计和金、银、铜等同族金属类似,可能會是銅紅色、銀白色或金黃色等有色彩的固體金属。[6][7]由於錀沒有足夠穩定的同位素,因此目前未能通過化學實驗來驗證其是否具有金的更重同族元素的性質。
德國達姆施塔特重離子研究所的研究團隊在1994年首次合成出錀元素。其名稱得自發現X射線的德國物理學家威廉·倫琴,不過錀衰變時並不會放出X射線。
概述 编辑
外部视频链接 | |
---|---|
基于澳大利亚国立大学的计算,核聚变未成功的可视化[8] |
超重元素[a]的原子核是在两个不同大小[b]的原子核的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[14]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[15]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[15][16]如果聚变发生了,两个原子核产生的一个原子核会处于被称为複合原子核的激发态。为了达到更稳定的状态,这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量。[c]这个过程会在原子核碰撞后的10−16秒发生,产生更稳定的原子核。[17][d]
粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[20]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]并转移到会停住原子核的半导体探测器中。撞击至探測器時的确切位置、能量和到达时间將會被記錄下來。[20]这个转移需要10−6秒的时间,意即这个原子核需要存在这么长的时间才能被检测到。[23]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[20]
原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子(质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[24]超重元素理论预测[25]和已观测到[26]的主要衰变方式,也就是α衰变和自发裂变,都是这种排斥引起的。[f]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]
嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。物理学家分析这些数据并试图得出结论,確認它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的效應没有其他解释,就可能在解释数据时出现错误。[i]
歷史 编辑
发现 编辑
錀是由德国达姆施塔特的重离子研究所(GSI)于1994年12月8日,在线性加速器内利用镍-64轰击铋-209而合成的。这次实验成功产生了三颗錀-272原子,其迅速衰变成其他元素。[38]
IUPAC/IUPAP聯合工作小組(JWP)在2001年時認為沒有足夠證據證明當時確實發現了錀。[39]GSI的小組在2002年重複實驗,並再檢測到三個原子。[40][41]在他們2003年的報告當中,聯合工作小組決定承認GSI團隊對此新元素的發現。[42]
命名 编辑
111號元素在2004年11月1日被命名为Roentgenium(Rg),纪念1895年发现X射线的科学家威廉·倫琴。根據IUPAC元素系統命名法,111號元素原称“Unununium”(Uuu),源自111的拉丁語寫法。
2005年,全国科学技术名词审定委员会提出第111号元素中文定名草案。2006年1月20日下午由全国科学技术名词审定委员会、国家语言文字工作委员会组织召开的第111号元素中文定名研讨会上,确定使用类推简化字“𬬭”(读音同“伦”),对应繁体字“錀”字,是古代表示化學元素金的古字。2007年3月21日全国科学技术名词审定委员会公布这一结果,同时也宣布该命名已经得到国家语言文字工作委员会的同意。[43][44]
同位素與核特性 编辑
目前已知的錀同位素共有7個,質量數分別為272、274和278-282,還有兩個已知但未確認的亞穩態,錀-272m和錀-274m。錀的同位素全部都具有極高的放射性,半衰期極短,非常不穩定,且較重的同位素大多比較輕的同位素來的穩定,其中最長壽的同位素為錀-282,半衰期約100秒,也是目前發現最重的錀同位素。未經證實的同位素錀-283和錀-286可能具有更長的半衰期,分別為5.1分鐘和10.7分鐘。除了錀-282外,其他壽命較長的同位素有錀-280和錀-281,半衰期分別為4.6秒和17秒,剩下4種較輕同位素的半衰期均以毫秒計。[45]大多數錀同位素主要發生α衰變或自發裂變,但錀-280也有機率發生電子捕獲。[46]
化學屬性 编辑
電子結構(相對論) 编辑
穩定的11族元素銅、銀和金都有著nd10(n+1)s1形式的外層電子排布。這些元素的第一激發態原子的外層電子排布為nd9(n+1)s2。由於d軌域電子之間的自旋-軌道作用,這種狀態分為兩個不同的能階。銅基態和最低激發態之間的能量差使銅呈紅棕色。銀的能量差距更大,因此呈銀色。然而,隨著原子序的增加,相對論效應使激發態更加穩定,金的能量差減少,因此再次呈金黃色。有關錀的計算表明,6d97s2能階足夠穩定,應可成為基態,而6d107s1則會是第一激發態。該新的基態與第一激發態間的能量差和銀相似,因此錀預計將呈銀色。[47]
推算的化學屬性 编辑
氧化態 编辑
錀預計將是6d系過渡金屬的第9個成員,屬於週期表中11族(IB)最重的成員,位於銅、銀和金的下面。每個11族元素的穩定氧化態都不同:銅形成穩定的+2態,銀則主要形成銀(I),金則主要形成金(III)。銅(I)和銀(II)比較少見。因此,錀預計主要形成穩定的+3態。由於相對論效應,金也形成-1穩定氧化態,錀可能也這樣做。
化學特性 编辑
該族較重的成員對化學反應呈惰性。銀和金都對氧氣呈惰性,但能與鹵素發生反應。此外,銀亦能與硫和硫化氫發生反應,銀的反應活性明顯比金較高。錀的惰性預計比金更高,將不會與氧和鹵素發生反應。最有可能的反應是與氟形成氟化物RgF3,与水形成的氢氧化物Rg(OH)3,以及通过氢氧化物制取得Rg2O3。
大眾文化 编辑
此元素在動畫節目「海綿寶寶」中,名字稱為邪惡元素(Jerktonium),符號為Jt,此元素有111個質子,在節目中可讓比奇堡的生物變邪惡,但是海綿寶寶和章魚哥除外,在節目中解藥為一首歌。
注释 编辑
- ^ 在核物理学中,如果一个元素有高原子序,就可以被称为重元素,例如82号元素铅。“超重元素”这一词通常指原子序大于103的元素(尽管也有其它的定义,例如原子序大于100[9]或112。[10]有时这一词和锕系后元素是同义词,将超重元素的上限定在还未发现的超锕系元素的开始。)[11]
- ^ 2009年,由尤里·奥加涅相引领的团队发表了他们通过对称的136Xe + 136Xe反应,尝试合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb。[12]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
-11 pb。[13] - ^ 激发能量越大,复合原子核放出的中子就越多。如果这些激发能量不足以使中子被放出,复合原子核就会放出γ射线来带走它的激发能量。[17]
- ^ IUPAC/IUPAP联合工作小组定义原子核只有10−14秒内不衰变,才能被认为化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间,[18]也是复合原子核的寿命上限。[19]
- ^ 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标。分离器中包含电场和磁场,若粒子速度恰好,則電場與磁場对运动粒子的影响会剛好抵消。[21]飞行时间质谱法和反冲能量的测量也有助分离,两者结合可以估计原子核的质量。[22]
- ^ 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[27]
- ^ 由于原子核的质量不是直接测量的,而是根据另一个原子核的质量计算得出的,因此这种测量称为间接测量。直接测量也是有可能的,但在大多数情况下,它们仍然无法用于超重原子核。[28]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[29]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[30]
- ^ 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的,[31]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[32]劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[19]因此他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[31]
- ^ 举个例子,102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定。[33]早先没有关于该元素发现的明确声明,所以由它的瑞典、美国、英国发现者命名为nobelium。后来证明这个元素的鉴定是错误的。[34]第二年,劳伦斯伯克利国家实验室无法重现瑞典的结果,而是宣布他们合成了该元素,但后来也被驳回。[34]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[35]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[36]由于其广泛使用,nobelium这个名称仍然保持不变。[37]
參考資料 编辑
- ^ 1.0 1.1 Turler, A. Gas Phase Chemistry of Superheavy Elements (PDF). Journal of Nuclear and Radiochemical Sciences. 2004, 5 (2): R19–R25. (原始内容 (PDF)存档于2011-06-11).
- ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (编). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
- ^ Östlin, A.; Vitos, L. First-principles calculation of the structural stability of 6d transition metals. Physical Review B. 2011, 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
- ^ Chemical Data. Roentgenium - Rg (页面存档备份,存于互联网档案馆), Royal Chemical Society
- ^ Roentgenium. [2022-01-26]. (原始内容存档于2022-03-04).
- ^ 6.0 6.1 Roentgenium. VEDANTU. [2021-04-30]. (原始内容存档于2022-03-04) (英语).
- ^ Roentgenium | Rg (Element) - PubChem. pubchem.ncbi.nlm.nih.gov. [2021-04-30]. (原始内容存档于2022-03-04).
- ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061 (英语).
- ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始内容存档于2021-05-15) (英语).
- ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11) (英语).
- ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语).
- ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语).
- ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于7 June 2015) (英语).
- ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始内容存档于2019-12-11) (英语).
- ^ 15.0 15.1 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容存档于2020-04-23) (俄语).
- ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始内容存档于2020-03-17) (英语).
- ^ 17.0 17.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927 (英语).
- ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容存档 (PDF)于2021-10-11) (英语).
- ^ 19.0 19.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-28]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容存档于2021-11-27) (英语).
- ^ 20.0 20.1 20.2 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始内容存档于2020-04-21) (英语).
- ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
- ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
- ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420 (1): 3. Bibcode:2013JPhCS.420a2001Z. ISSN 1742-6588. arXiv:1207.5700 . doi:10.1088/1742-6596/420/1/012001.
- ^ Beiser 2003,第432頁.
- ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320 (英语).
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Beiser 2003,第439頁.
- ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容存档于2021-11-28) (英语).
- ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语).
- ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始内容存档于2021-11-28) (英语).
- ^ 31.0 31.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始内容存档于2021-11-28) (英语).
- ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07] (俄语). Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语).
- ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始内容存档于2021-03-08) (英语).
- ^ 34.0 34.1 Kragh 2018,第38–39頁.
- ^ Kragh 2018,第40頁.
- ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [7 September 2016]. doi:10.1351/pac199365081815. (原始内容存档 (PDF)于25 November 2013) (英语).
- ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容存档 (PDF)于2021-10-11) (英语).
- ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V. The new element 111. Zeitschrift für Physik A. 1995, 350 (4): 281. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182.
- ^ Karol; Nakahara, H.; Petley, B. W.; Vogt, E.; et al. On the discovery of the elements 110–112 (PDF). Pure Appl. Chem. 2001, 73 (6): 959–967 [2011-08-01]. doi:10.1351/pac200173060959. (原始内容存档 (PDF)于2018-03-09).
- ^ Hofmann, S.; Heßberger, F.P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; Leino, M. New results on elements 111 and 112. The European Physical Journal A. 2002, 14 (2): 147. doi:10.1140/epja/i2001-10119-x.
- ^ Hofmann; et al. New results on element 111 and 112 (PDF). GSI report 2000. [2008-03-02]. (原始内容 (PDF)存档于2008-02-27).
- ^ Karol, P.J.; Nakahara, H.; Petley, B.W.; Vogt, E. Karol et al (PDF). Pure Appl. Chem. 2003, 75 (10): 1601–1611 [2011-08-01]. doi:10.1351/pac200375101601. (原始内容存档 (PDF)于2016-08-22).
- ^ 全国科技名词委; 才磊. 第111号元素中文定名的说明及元素中文定名的原则. 中国科技术语. 2006-03-25, 8 (01): 18 [2020-11-06].
- ^ 邹声文. 我国公布111号元素中文名称. 新华网. [2020-11-06].
- ^ Sonzogni, Alejandro. Interactive Chart of Nuclides. National Nuclear Data Center: Brookhaven National Laboratory. [2008-06-06]. (原始内容存档于July 28, 2018).
- ^ Forsberg, U.; et al. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am. Nuclear Physics A. 2016, 953: 117–138. Bibcode:2016NuPhA.953..117F. S2CID 55598355. arXiv:1502.03030 . doi:10.1016/j.nuclphysa.2016.04.025.
- ^ Turler, A. Gas Phase Chemistry of Superheavy Elements (PDF). Journal of Nuclear and Radiochemical Sciences. 2004, 5 (2): R19–R25. (原始内容 (PDF)存档于2011-06-11).
外部連結 编辑
- 元素錀在洛斯阿拉莫斯国家实验室的介紹(英文)
- EnvironmentalChemistry.com —— 錀(英文)
- 元素錀在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素錀在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – 錀(英文)