概形論術語

(重定向自平坦態射

這是概形論術語。欲知代數幾何中概形的簡介,請見條目仿射概形射影空間概形。本條目旨在列出概形論中的基本技術定義與性質。

编辑

一個概形   是一個局部賦環空間,故也是拓撲空間,但「  的點」具有三重涵義:

  • 拓撲空間意義下的點。
  •  -值點:對任一概形  ,一個  -值點是指一個態射  
  • 幾何點:當   定義在一個   上時(換言之   -概形),一個幾何點乃是一個  -值點,其中   代數閉包

幾何點是古典問題的主角,例如對複代數簇而言,通常說「點」即指幾何點。拓撲空間的點包括一般點的類比(相對於扎里斯基而非韋伊的理論)。藉由米田引理,考慮所有的概形   與所有  -值點,可以將概形   理解為相應的可表函子  ,此觀念是代數幾何發展史上的一大步。

纖維 编辑

格羅滕迪克的相對幾何框架下,一態射的纖維有三重涵義:

  • 一個點(拓撲意義下)的逆像。
  • 兩個態射的纖維積:對於仿射概形,纖維積對應到環的張量積
  • 幾何纖維:設   -概形(  為域),  為一  -態射,  為一幾何點,則   點的幾何纖維定義為相應的纖維積  

概形之性質 编辑

概形的大部分性質都是「局部的」,換言之:  具有性質甲,若且唯若對其任一開覆蓋  ,每個   皆具性質甲;而通常只要對一組開覆蓋驗證即可。這類性質有時也被稱為「扎里斯基局部」的,藉以區別對於其他格羅滕迪克拓撲的情形(如平展拓撲)。

考慮一概形   及一組仿射開子概形   組成的開覆蓋。藉此可將概形的局部性質翻譯為交換環的性質。一個性質甲在上述意義下是局部的,若且唯若相應的環性質在局部化之下不變。

舉例明之,局部諾特概形是能由諾特環交換環譜覆蓋的概形。由於諾特環的局部化仍為諾特環,局部諾特性確實是上述意義下的局部性質。另一個例子是既約概形,這也是局部性質,因為若一個交換環無冪零元,則其局部化亦然。

分離概形並非局部性質:任何仿射概形都是分離概形,因此任何概形都是「局部分離」的,然而存在非分離的概形。

以下是環的局部性質列表(不全),由此可定義概形的相應性質。以下令   為一概形之開覆蓋。

概念 定義 例子 反例
與概形結構相關者
不可約 若一連通概形   (作為拓撲空間)不能表為兩個閉子集的聯集,除非其中一者為  ,則稱之為不可約概形。利用素理想與仿射概形的點的對應,可知連通概形   不可約若且唯若每個   恰有一個極小素理想。凡諾特概形皆可唯一表示為有限個極大不可約閉子集的聯集,這些閉子集稱為其不可約成份 仿射空間射影空間 Spec k[x,y]/(xy) =  
既約   皆為既約環(即:無冪零元素),等價的說法是結構層   沒有冪零的局部截面。代數幾何的一大進步是將代數簇推廣為概形,而概形可能是非既約的。 代數簇 (根據定義) k[x]/(x2)
不可約的既約概形稱作整概形。等價的說法是:該概形可由整環的譜覆蓋。嚴格地說,這只在連通概形上才是局部性質。 Spec k[t]/f, f 為不可約多項式 Spec AB. (A, B ≠ 0)
正規 若每個   都是整閉的,則稱   為正規概形。 正則概形、帶有理奇點的曲面 帶奇點的曲線
與正則性相關者
正則 若每個   都是正則局部環,則稱  正則概形 域上的平滑代數簇 Spec k[x,y]/(x2+x3-y3)= 
Cohen-Macaulay   的局部環皆是Cohen-Macaulay環,則稱  Cohen-Macaulay 概形 正則概形、 Spec k[x,y]/(xy)  
與「大小」相關者
局部諾特 每個   皆為諾特環。如果此外更要求該覆蓋為有限覆蓋,則該概形稱為諾特概形 古典代數幾何的大部分對象  
  的任兩個不可約閉子概形   之間的極大鏈都有相同長度,則稱  鏈概形,這在局部上對應於鏈環。整鏈概形的維度是局部性質。 代數幾何的大部分對象 見條目鏈環中的反例

態射之性質 编辑

格羅滕迪克的基本理念之一是強調「相對」性,亦即置重點於態射的性質。概形範疇有一終對象  ,所以任何概形可以唯一地理解為  -概形,藉此可以從態射性質定義概形本身的性質。

以下令

 

為概形間的態射。一如既往,以下的性質也是局部的,即:若存在開覆蓋   使得    上的限制帶有該性質,則   本身也帶該性質。

與拓撲結構相關的概念 编辑

若一個態射在拓撲空間上是開映射,則稱此態射為開態射;閉態射的定義類似。平坦態射皆為開態射。

   中稠密,則稱此態射為優勢態射(英文:dominant morphism,法文:morphisme dominant)。對於仿射概形,優勢態射對應到環的單射同態。

開浸入與閉浸入 编辑

  • 開浸入:若   同構於一個開子概形的包含映射,則稱之為開浸入。
  • 閉浸入:若   同構於一個閉子概形的包含映射,則稱之為閉浸入。閉浸入在局部上對應到環的商同態。閉浸入可以如下刻劃:  是閉浸入,若且唯若   在拓撲空間的意義下是個閉浸入( 同胚,且    中的閉集),而且   是滿射。
  • 浸入:閉浸入與開浸入的合成。

開浸入僅關乎拓撲,而閉浸入則與結構層有關。概形的閉子集可以帶有多種閉子概形結構,其中存在一個始對象,使得其結構層不含冪零元,稱為該閉子集對應的既約子概形。

仿射態射與射影態射 编辑

  的仿射開子概形對   的逆像仍為仿射概形,則稱  仿射態射。用較炫的說法:仿射態射係來自  -代數的整體   構造,這是整體版本的交換環譜。例子包括向量叢

射影態射的定義類似,此時對應到分次  -代數的整體   構造,另一種等價的刻劃是:   是射影態射,若且唯若它可分解為閉浸入   及自然投影  

分離態射與真態射 编辑

  • 分離態射:使得對角態射   為閉浸入的態射,此概念對應到拓撲學中的豪斯多夫空間
  • 真態射:即滿足下列性質的態射
    • 分離態射
    • 泛閉(即:任一閉浸入   在對   取纖維積後仍為閉浸入)
    • 有限型

有限型、擬有限與有限態射 编辑

  有一組仿射開覆蓋  ,使得態射   對應到  ,使得   是有限  -模,則稱此態射為有限態射

若將上述條件改為:  有一組仿射開覆蓋   ,使得   是有限生成的  -代數,則稱此態射為局部有限型態射;若上述開覆蓋   可取為有限的,則稱之有限型態射。代數幾何中探討的多數態射都是有限型態射。

  的纖維都是有限的,且是有限型態射,則稱之為擬有限態射。有限態射皆為擬有限態射。

平坦態射 编辑

  在結構層的莖上給出平坦同態,則稱之為平坦態射。視此態射為一族以   的點為參數的概形,則平坦性可詮釋為纖維在變形下的某些良好性質,例如希爾伯特多項式的不變性。

非分歧態射與平展態射 编辑

對一點  ,考慮相應的環同態:

 

   的極大理想,並設

 

若對所有     的極大理想,且導出的映射   是有限、可分的代數擴張,則稱此態射為非分歧態射

平坦的非分歧態射稱為平展態射,此外尚有多種等價定義。在代數簇的情形,平展態射恰好是在切空間上導出同構的態射,這正好是微分幾何中平展態射的定義。

平滑態射 编辑

平滑態射對應到拓撲學中的塞爾纖維化映射,在代數幾何中有多種定義:

  •   是有限型平坦態射,且   是局部自由  -模,其秩為  
  •   可分解為某個平展態射   及自然投影   之合成。
  • 形式判準:對任何交換環   及其理想  ,並滿足  ,則   是滿射。

外部連結 编辑

文獻 编辑