打开主菜单
45度的3個同界角

幾何學中,同界角英语:Coterminal angles)是指兩個有向角有不同角度量值,但共用同一個起始邊與終邊,即共享相同的始邊和終邊的角度,但擁有不同的旋轉量,就稱為同界角[1]。同界角擁有相同的三角函數值,因此三角函數具有周期性。每個角皆有無限多同界角,其量值可以為,但必須是一個實數

目录

性質编辑

 
正轉逆轉都可以得到相同的,但他們擁有不同的旋轉量,圖中為45度和315度

每個同界角皆差360,換句話說,每360度就會出現一個同界角[2]。每個同界角兩邊的向量內積外積皆有相同的。此外,任何角都可以找到最小正同界角最大負同界角

同界角可以如下定義:

  1. 若有兩個角有相同的始與終邊,則兩個角互為同界角
  2. 若兩角相差360度的整數倍則兩個角互為同界角

同界角存在關係式:

 

亦可寫為:

 

或:

 
 

與三角函數關係编辑

 
三角函數周期可以發現,每間隔 就會找到相同高度的點,該點即為同界角的三角函數值。
 
反三角函數圖形得知反餘弦必得到最小正同界角,而反正弦則有可能得到最小正同界角或最大負同界角

三角函數诱导公式可以得知同界角的存在,下表指出,任何三角函數,只要位移為 ,就會得到相同的函數值,因此  互為同界角。

移位   移位  
   的周期
移位  
     的周期
     

另外,從簡單的三角方程中,也可以找到同界角,例如:

考慮方程 有無限多組解,其中 為一個解且為最小正同界角,其餘解皆與 或是- 互為同界角。

但是有例外,如正切餘切,由於其週期不為360度,如正切函數的周期為180(即 ),因此相同的函數值未必互為同界角。

參見编辑

參考文獻编辑

  1. ^ Neal, Karla V.; R. David Gustafson, Jeffrey D. Hughes. Coterminal angles. Precalculus, 1st ed.. Cengage Learning. : 第412頁. ISBN 1133712673. 
  2. ^ Slavin, Steve; Ginny Crisonino. Circle. Wiley Self-Teaching Guides第 155 卷. John Wiley & Sons. 2004-10-28: 第90頁. ISBN 0471680192.