基本群

代數拓撲中,基本群(或稱龐加萊)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。

基本群能用以研究兩個空間是否同胚,也能分類一個連通空間覆疊空間(至多差一個同構)。

基本群的推廣之一是同倫群

直觀詮釋:二維環面的情形编辑

 
二維環面上由p點出發的環路

首先,讓我們考慮二維環面(或者可以想象成甜甜圈的表面)的例子作為熱身,固定其上一點 

從此點出發,則可以建構環路(即:從 出發的並回到 的閉曲線)。設想環路如橡皮筋可自由變形與拉長,只要起點與終點仍是  且環路仍處在環面上即可。這種變形叫做同倫,若一環路可以從另一環路藉此變形而得到,則稱兩者同倫等價。我們只探討環路的同倫類。二維環面的基本群由環路的同倫類組成。

 
ab非同倫等價

在上圖中,  並非同倫等價:無法連續地從一者變換到另一者而不將環路「扯斷」,它們代表基本群中的不同元素。藉著增加環繞圈數,可以獲得更多的同倫類。

 
ab兩條環路的銜接

顧名思義,基本群不只是一個集合,它帶還有結構:二元運算由環路的銜接給出,即先走完第一條環路,再走第二條環路,使得兩段環路上的速率相同。基本群中的單位元素 由靜止在 點的環路代表,逆元由環路的逆行代表之,即:若一元素由環路 代表,則其逆元由 代表,其中 

形式定義编辑

 拓撲空間 為其中定點。一條連續道路是一個連續映射 ,而一個以 為基點的環路是一條滿足 的連續道路。以下若不另外說明,則環路皆以 為基點。

對兩條環路 ,如果存在一個連續函數(保持基點的同倫 使得

  •  
  •  
  •  

則稱兩者同倫等價。不難驗證此關係確為等價關係。因此我們可考慮環路對此關係的等價類,以 表一環路 隸屬的等價類,亦稱同倫類。

現在定兩條環路 的銜接為:  

直觀地說,此環路是先走 再走 ,每一段都將速度加倍,以在單位時間內走完全程。可證明 決定於 ,因此可在環路的同倫類上定義二元運算「*」。不難看出此運算滿足結合律

令單位元 為環路 (即靜止於 點的環路),並令環路 之逆為 (即 逆行)。可證明 在同倫類上有明確定義,且同倫類在此運算下成為一個

此群稱為 在基點 基本群,記為 

例子编辑

  •  對任何基點的基本群皆為平凡群。換言之,每個環路都可以連續地變形到基點。這類空間稱為單連通空間。
  •  時, 為單連通。
  • 圓環 之基本群為 。其元素一一對應於 ,其中 表示環路繞行圓環的次數(計入方向);群運算由 給出。一般而言, 維環面的基本群同構於 
  • 基本群也可能含撓元:例如射影平面 的基本群便同構於 
  • 基本群不一定可交換:例如挖去兩點的平面 的基本群同構於兩個生成元的自由群,生成元分別對應於繞行  的環路。

事實上,可以證明對任何群 皆存在一個拓撲空間,使其基本群同構於 (此空間可以用二維CW複形構造,當群為有限展示時則能以四維流形構造)。可以證明,每個群都是某個緊豪斯多夫空間的基本群當且僅當不存在可測基數[1]

基本性質编辑

對基點的獨立性编辑

以下設 道路連通空間。 ,則 同構於 。這是因為存在一條從  的道路 ,依之定義映射

 

此映射給出從  的同構,其逆則為

 

由此可談論空間本身的基本群(頂多差一個同構),記為 基本廣群理論也'可以簡練地解釋基本群對基點的獨立性。

對連續映射的函子性编辑

 為空間 同倫等價,則 為同構。

推論.同胚的空間有相同的基本群。

積空間的基本群编辑

 

與第一個同調群的關係编辑

道路連通空間的第一個同調群是基本群的交換化。這是Hurwitz定理的特例。

計算方法與應用编辑

范坎彭(van Kampen)定理编辑

基本群一般不易計算,因為須證明某些環路非同倫等價。當空間可分割為較單純的空間,而其基本群已知時,范坎彭定理(或塞弗特-范坎彭(Seifert-van Kampen)定理)可以將基本群表為一個歸納極限

錐定理與射影空間的基本群编辑

對一個拓撲空間 ,定義其「錐」 ,其中 表閉區間 。當 時, 同胚於圓錐。

道路連通空間的錐是單連通的,我們也有自然包含映射 

 為連續映射,定義映射錐為

 

例子:設  到自身的映射 ,此時 

錐定理斷言 的基本群同構於  的正規化的商

應用:實射影空間之基本群同構於 

圖、曲面與多面體的基本群编辑

  • 的基本群總是自由群。這點可藉著將圖沿其最小生成樹縮為一束 看出。
  • 多面體的基本群可以展示為生成元與關係,使得每個關係由多面體的一個面給出。
  • 可定向緊曲面的基本群帶一個有 個生成元 及一個關係 的展示。整數 決定於曲面的拓撲結構,稱為其虧格

基本群與覆疊空間编辑

基本群的子群的共軛類一一對應於空間的覆疊的同構類,在此對應下,正規子群對應於伽羅瓦覆疊。

覆疊空間理論中,業已證明了如果空間有單連通的覆疊空間(例如對局部單連通空間),則基本群同構於萬有覆疊空間的自同構群。

推廣编辑

基本廣群编辑

如果一個小範疇(即:對象與全體態射構成一集合)的所有態射皆可逆,則稱之為一個廣群。所有廣群與其間的函子構成一個範疇。群是只有一個對象的廣群。

 為一廣群,對其對象定義下述等價關係:

 

得到的商集記作 (或曰連通分支),這是從廣群範疇到集合範疇的函子。

對每個拓撲空間,以下述方式函子地構造一廣群 

 為拓撲空間,令 的對象為 的點,從點  的態射是從  道路的同倫類。同倫等價關係相容於道路的頭尾相接,故定義了一個廣群 ,稱為 基本廣群

Van Kampen定理在廣群的框架下有簡練的表述。

 為廣群,而 為其對象(也稱作 的點)。 在態射合成下成為一個群,記之為 。註:由於基點選取問題, 並不能定義一個從廣群範疇到群範疇的函子。

一個拓撲空間的基本群可以用基本廣群定義為 

高階同倫群编辑

基本群實則是第一個同倫群,這是符號 中「1」的由來。

代數幾何中的基本群编辑

基本群亦可抽象地定義為纖維函子的自同構群,此纖維函子對每個帶基點的覆疊映射 給出纖維 

此定義可以推廣到代數幾何,而之前給出的環路定義則不可。在此我們將拓撲空間的覆疊映射代為平展態射,拓撲空間的基點代為概形上的一個幾何點 ,而纖維函子 對一平展覆疊 給出幾何纖維 。此推廣源出格羅滕迪克夏瓦雷

這套理論可以解釋函數域伽羅瓦理論黎曼曲面的覆疊理論之聯繫。

文獻编辑

  • Allen Hatcher, Algebraic Topology (2001), Cambridge University Press. ISBN 0521795400
  • J. P. May, A Concise Course in Algebraic Topology (1999), Chicago University Press. ISBN 0226511839

外部連結编辑

  1. ^ Adam Przezdziecki, Measurable cardinals and fundamental groups of compact spaces, Fundamenta Mathematicae 192 (2006), 87-92 [1]页面存档备份,存于互联网档案馆