方根

乘方的逆运算
(重定向自開方

数学中,一數次方根,則。在提及实数次方根的时候,若指的是此数的次方根,則可以用根号)表示成。例如:1024的主10次方根为2,就可以记作。當時,則可以省略。定义实数的主次方根为次方根,且具有与相同的正负号的唯一实数。在偶数時,负数没有主次方根。习惯上,将2次方根叫做平方根,将3次方根叫做立方根

方根也是的分数指数,即數次方:

符号史

编辑

最早的根号“√”源于字母「r」的变形(出自拉丁语latus的首字母,表示“边长”),没有线括号(即被开方数上的横线),后来数学家笛卡尔给其加上线括号,但与前面的方根符号是分开的,因此在复杂的式子显得很乱。直至18世纪中叶,数学家卢贝将前面的方根符号与线括号一笔写成,并将根指数写在根号的左上角,以表示高次方根(当根指数为2时,省略不写。)。形成了现在所熟悉的开方运算符号 

考慮在计算机中的输入问题,有时也可以使用sqrt(a,b)来表示a的b次方根。

基本运算

编辑

带有根号的运算可由如下公式推導而得:

 
 
 

这裡的ab正数

对于所有的非零复数 ,有 个不同的复数 使得 ,所以符号 就會出現歧义(通常這樣寫是取 個值當中主幅角最小的)。 单位根是特别重要的。

当一个数从根号形式变换到形式,幂的规则仍适用(即使对分数幂),也就是

 
 
 

例如:

 

若要做加法减法,需考慮下列的概念。

 

若已可以简化根式表示式,则加法和减法就只是的“同类项”问题。

例如

 
 
 
 


不尽根数

编辑

未經化簡的根數,一般叫做“不尽根数”(surd),可以处理为更简单的形式。

如下恒等式是處理不尽根数的基本技巧:

  •  
  •  
  •  
  •  

无穷级数

编辑

方根可以表示为无穷级数:

 

找到所有的方根

编辑

任何数的所有的根,实数或复数的,可以通过简单的算法找到。这个数应当首先被写为如下形式 (参见欧拉公式)。接着所有的n次方根给出为:

 

对于 ,这裡的 表示 的主 次方根。

正实数

编辑

所有   次方根,这裡的 是正实数,的复数解由如下简单等式给出:

 

对于 ,这裡的 表示 的主 次方根。

解多项式

编辑

曾经有數學猜想,認為多项式的所有根可以用根号和四則运算来表达;但是阿贝尔-鲁菲尼定理断言了这不是普遍为真的。例如,方程

 

的解不能用根号表达。

要解任何n次方程,参见求根算法

算法

编辑

對於正數 ,可以通過以下算法求得 的值:

  1. 猜一個 的近似值,將其作為初始值 
  2.  。記誤差為 ,即 
  3. 重複步驟2,直至絕對誤差足夠小,即: 

從牛頓法導出

编辑

 之值,亦即求方程 的根。

 ,其導函數 

牛頓法作迭代,便得

 
 
 
 

從牛頓二項式定理導出

编辑

 為迭代值, 為誤差值。

 (*),作牛頓二項式展開,取首兩項: 

調項得 

將以上結果代回(*),得遞歸公式 

参见

编辑

外部链接

编辑