假设ƒ是一个多元函数。例如:
-
f =
x2 +
xy +
y2的图像。我们希望求出函数在点(1, 1)的对
x的偏导数;对应的切线与
xOz平面平行。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1)的与xOz平面平行的切线。右图中显示了函数的图像以及这个平面。左图中显示了函数在平面y = 1上是什么样的。我们把变量y视为常数,通过对方程求导,我们可以发现ƒ在点(x, y)的导数,记为:
-
于是在点(1, 1)的与xOz平面平行的切线的斜率是3。
-
在点(1, 1),或称“ƒ在(1, 1)的关于x的偏导数是3”。
函数f可以解释为y为自变量而x为常数的函数:
- 。
也就是说,每一个x的值定义了一个函数,记为fx,它是一个一元函数。也就是说:
- 。
一旦选择了一个x的值,例如a,那么f(x,y)便定义了一个函数fa,把y映射到a2 + ay + y2:
- 。
在这个表达式中,a是常数,而不是变量,因此fa是只有一个变量的函数,这个变量是y。这样,便可以使用一元函数的导数的定义:
-
以上的步骤适用于任何a的选择。把这些导数合并起来,便得到了一个函数,它描述了f在y方向上的变化:
-
这就是f关于y的偏导数,在这裡,∂是一个弯曲的d,称为偏导数符号。为了把它与字母d区分,∂有时读作“der”、“del”、“dah”或“偏”,而不是“dee”。
一般地,函数f(x1,...,xn)在点(a1,...,an)关于xi的偏导数定义为:
-
在以上的差商中,除了xi以外的所有变量都是固定的。这个固定值的选择决定了一个一元函数 ,根据定义,
-
这个表达式说明了偏导数的计算可以化为一元导数的计算。
多变量函数的一个重要的例子,是欧几里德空间Rn(例如R2或R3)上的标量值函数f(x1,...xn)。在这种情况下,f关于每一个变量xj具有偏导数∂f/∂xj。在点a,这些偏导数定义了一个向量:
-
这个向量称为f在点a的梯度。如果f在定义域中的每一个点都是可微的,那么梯度便是一个向量值函数∇f,它把点a映射到向量∇f(a)。这样,梯度便决定了一个向量场。
一个常见的符号滥用是在欧几里得空间R3中用单位向量 来定义Nabla算子 (∇) 如下:
-
或者,更一般地,对于n维欧几里得空间Rn 的坐标(x1, x2, x3,...,xn)和单位向量( ):
-
考虑一个圆锥的体积V;它与高度h和半径r有以下的关系:
- 。
V关于r的偏导数为:
它描述了高度固定而半径变化时,圆锥的体积的变化率。
V关于h的偏导数为:
它描述了半径固定而高度变化时,圆锥的体积的变化率。
现在考虑V关于r和h的全导数。它们分别是:
-
以及
-
现在假设,由于某些原因,高度和半径的比k需要是固定的:
-
这便给出了关于r的全导数:
-
可以化简为:
-
类似地,关于h的全导数是:
-
含有未知函数的偏导数的方程,称为偏微分方程,它在物理学、工程学,以及其它应用科学中经常会见到。
与关于r和h二者相关的全导数是由雅可比矩阵给出的,它的形式为梯度向量 。