# 反餘弦

（重定向自反余弦
 反餘弦 性質 奇偶性 非奇非偶函数 定義域 [-1, 1] 到達域 ${\displaystyle [0,\pi ]}$ 周期 N/A 特定值 當x=0 ${\displaystyle {\frac {\pi }{2}}}$ 當x=+∞ N/A 當x=-∞ N/A 最大值 ${\displaystyle \pi }$ 最小值 ${\displaystyle 0}$ 其他性質 渐近线 N/A 根 1

## 定義

${\displaystyle \arccos x=-{\mathrm {i} }\ln \left(x+{\sqrt {x^{2}-1}}\right)\,}$

## 性質

${\displaystyle \arccos :\left[-1,1\right]\rightarrow \left[0,\pi \right]}$ .

${\displaystyle {\frac {d}{dx}}\arccos x=-{\frac {1}{\sqrt {1-x^{2}}}}}$ .

{\displaystyle {\begin{aligned}\arccos x&{}={\frac {\pi }{2}}-\arcsin x\\&{}={\frac {\pi }{2}}-(x+\left({\frac {1}{2}}\right){\frac {x^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {x^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {x^{7}}{7}}+\cdots )\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right){\frac {x^{2n+1}}{(2n+1)}};\qquad |x|\leq 1\end{aligned}}}

{\displaystyle {\begin{aligned}\arccos x&{}=\pi -{\sqrt {2(x+1)}}\left(1+\left({\frac {1}{4}}\right){\frac {x+1}{3}}+\left({\frac {1\cdot 3}{4\cdot 8}}\right){\frac {(x+1)^{2}}{5}}+\left({\frac {1\cdot 3\cdot 5}{4\cdot 8\cdot 12}}\right){\frac {(x+1)^{3}}{7}}+\cdots \right)\\&{}=\pi -{\sqrt {2(x+1)}}\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{3n}(n!)^{2}}}\right){\frac {(x+1)^{n}}{(2n+1)}}\end{aligned}}}

${\displaystyle \arccos x_{1}+\arccos x_{2}={\begin{cases}\arccos \left(x_{1}x_{2}-{\sqrt {1-x_{1}^{2}}}{\sqrt {1-x_{2}^{2}}}\right)&x_{1}+x_{2}\geq 0\\2\pi -\arccos \left(x_{1}x_{2}-{\sqrt {1-x_{1}^{2}}}{\sqrt {1-x_{2}^{2}}}\right)&x_{1}+x_{2}<0\end{cases}}}$
${\displaystyle \arccos x_{1}-\arccos x_{2}={\begin{cases}-\arccos \left(x_{1}x_{2}+{\sqrt {1-x_{1}^{2}}}{\sqrt {1-x_{2}^{2}}}\right)&x_{1}\geq x_{2}\\\arccos \left(x_{1}x_{2}+{\sqrt {1-x_{1}^{2}}}{\sqrt {1-x_{2}^{2}}}\right)&x_{1} .