幾何學中,十一面體(英語:Hendecahedron)是指具有十一多面體[1]。沒有任何十一面體是正十一面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的十一面體。

十一面體
部分的十一面體
雙對稱十一面體
雙對稱十一面體
五角錐台錐
五角錐台錐
正五角錐柱
正五角錐柱
截頂角五方偏方面體
截頂角五方偏方面體
側錐六角柱
側錐六角柱
二側錐三角柱
二側錐三角柱

命名

編輯

十一面體的英文是Hendecahedron,其命名方式為Hen-代表一,deca代表十,然後結合多面體字尾-hedron,就得到十一面體Hendecahedron[2]

常見的十一面體

編輯

在所有凸十一面體中,包含鏡射像共有440,564種拓樸結構明顯差異的凸十一面體[3][4]。拓樸結構有明顯差異意味著兩種多面體無法透過移動頂點位置、扭曲或伸縮來相互變換的多面體,例如五角錐柱和九角柱無論如何變形都無法互相變換,因此拓樸結構不同,但九角柱和九角錐台可以透過伸縮其中一個九邊形面來彼此互換,因此三角柱和三角錐台在拓樸上並無明顯差異。

常見的十一面體有錐體柱體、部分的詹森多面體半正多面體,此處的半正多面體並非阿基米德立體,而是正九角柱。

其他十一面體還有九角柱、十角錐、正五角錐反角柱的對偶、雙對稱十一面體等多面體,其中雙對稱十一面體可以密鋪空間。[5]

三角罩帳

編輯
 
正三角罩帳

三角罩帳是指以三角形為底的罩帳,是一種十一面體,由1個三角形頂面、1個六邊形底面、3個五邊形側面和6個三角形側面組成,共有11個面、21條邊和12個頂點,其中頂面的三角形與底面的六邊形互相平行,側面的三角形與五邊形交錯地圍繞軸分佈在周圍。

以正三角形為底的三角罩帳稱為正三角罩帳,其僅有頂面和底面為正多邊形,分別為頂面的正三邊形和底面的正六邊形,側面可能可以存在正三角形或存在正五邊形,但有正三角形面時,五邊形最多僅能是等邊不等角的非正五邊形;有正五邊形面時,三角形會出現等腰三角形,故不屬於詹森多面體。唯一屬於詹森多面體的罩帳僅有正五角罩帳[6]

正三角罩帳的對稱群為C3v英語Dihedral symmetry in three dimensions群,階數為6階。

截半三角柱

編輯
 
截半三角柱的旋轉動畫

在幾何學中,截半三角柱是指經過截半變換後的三角柱,是一種十一面體[7],其側面是正方形、底面是正三角形,另外還有6個等腰三角形面。

截半三角柱可由三角柱將邊的中點當作新的頂點,舊的頂點消失,來構造,換句話說,即是用三角柱由一條棱斬到另一條棱的中點(即斬去三角柱的頂點,但不是截角)而成。

其具有D3h二面體群的對稱性。

詹森多面體

編輯

在十一面體中,有3個是詹森多面體,它們分別為:正五角錐柱二側錐三角柱側錐六角柱

名稱 種類 圖像 編號 頂點 面的種類 對稱性 展開圖
正五角錐柱 角錐柱   J9[8] 11 20 11 5個正三角形 
5個正方形 
1個正五邊形 
C5v, [5], (*55)  
二側錐三角柱 錐體與柱體的組合   J50[9] 8 17 11 10個正三角形 
1個正方形 
C2v  
側錐六角柱 錐體與柱體的組合   J54[10] 8 17 11 4個正三角形 
5個正方形 
2個六邊形 
C2v  

九角柱

編輯
 
正九角柱

九角柱是一種底面為九邊形的柱體,是十一面體的一種,由11個面、27條邊和18個頂點組成[11],對偶多面體為雙九角錐[12]。正九角柱代表每個面都是正多邊形的九角柱,其每個頂點都是2個正方形和1個九邊形的公共頂點,因此具有每個角等角的性質,可以歸類為半正十一面體。而頂點都是2個正方形和1個九邊形的公共頂點的這種頂角,在頂點圖中以 表示。正九角柱在施萊夫利符號中可以利用{9}×{} 或 t{2, 9}來表示;在考克斯特—迪肯符號英語Coxeter-Dynkin diagram中可以利用     來表示;在威佐夫符號英語Wythoff symbol中可以利用2 9 | 2來表示;在康威多面體表示法中可以利用P9來表示。若一個正九角柱底邊的邊長為 、高為 ,則其體積 和表面積 [13]

 
 

十角錐

編輯

十角錐是一種底面為十邊形的錐體,是十一面體的一種,由11個面、20條邊和11個頂點組成[14],其對偶多面體是自己本身[15]。正十角錐是一種底面為正十邊形的十角錐。若一個正十角錐底邊的邊長為 、高為 ,則其體積 和表面積 [15]

 
 

十一面體列表

編輯
名稱 種類 圖像 符號 頂點 χ 面的種類 對稱性 展開圖
九角柱 稜柱體   t{2,9}
{9}x{}
     
18 27 11 2 2個九邊形 
9個矩形 
D9h, [9,2], (*922), order 36
十角錐 稜錐體   ( )∨{10} 11 20 11 2 1個十邊形 
10個三角形 
C10v, [10], (*10 10)
五角錐柱 角錐柱
詹森多面體
  P5+Y5 11 20 11 2 5個三角形 
5個正方形 
1個五邊形 
C5v, [5], (*55)
五角錐台錐 截角雙錐   11 20 11 2 1個五邊形 
5個梯形 
5個三角形 
C5v, [5], (*55)  
三角罩帳 罩帳   12 21 11 2 1個三角形頂面
1個六邊形底面
3個五邊形側面
6個三角形側面
C3v英語Dihedral symmetry in three dimensions, [3], (*33), order 6
截頂角五方偏方面體 截頂角偏方面體   16 25 11 2 1個五邊形底面
5個五邊形側面
5個鷂形側面
C5v, [5], (*55)  
截半三角柱   9 18 11 2 2個三角形 
3個正方形 
6個等腰三角形 
D3h, [3,2], (*322), order 12  
截半雙三角錐 9 18 11 2 3個正方形 
8個三角形 
D3h, [3,2], (*223) order 12
雙對稱十一面體 空間充填多面體   11 20 11 2 4個箏形 
2個菱形 
4個等腰三角形 
1個正方形 
 

在化學中

編輯

化學中,將十八面體硼烷離子([B11H11]2−)的全部去掉後,可以得到一個結構,它是十八面體,再將每個原子做垂直於重心到硼原子的面,可構造成新的多面體,即為十八面體硼烷結構的對偶多面體,也是十一面體之一。[16]

雙對稱十一面體

編輯

雙對稱十一面體(Bisymmetric Hendecahedron)是十一面體的一種多面體

柏拉圖阿基米德立體,只有少數可以密鋪於空間,也就是說堆砌在一起,不留空隙,以填補空間。Guy Inchbald描述了一個有趣的多面體,可以以令人驚訝的方式利用11面體完成空間的密鋪。[5][17][18]

圖像 旋轉動畫 展開圖
     

曾有人提出一個十一面體[5],它的面數和頂點數是相同的[19],經過扭曲後,會得到不同的特性。最對稱的自身對偶十一面體是雙對稱十一面體[20],它之所以會稱為雙對稱是因為它有兩個對稱面[19]

參考文獻

編輯
  1. ^ Thomas H. Sidebotham. The A to Z of Mathematics: A Basic Guide. John Wiley & Sons. 2003: 237. ISBN 9780471461630. 
  2. ^ Schwartzman Steven. The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English MAA Spectrum. Washington, D.C. : The Mathematical Association of America,. 1994: 243. ISBN 9780883855119. 
  3. ^ Steven Dutch: How Many Polyhedra are There?頁面存檔備份,存於網際網路檔案館
  4. ^ Counting polyhedra頁面存檔備份,存於網際網路檔案館) numericana.com [2016-1-10]
  5. ^ 5.0 5.1 5.2 Inchbald, Guy. "Five Space-Filling Polyhedra." The Mathematical Gazette 80, no. 489 (November 1996): 466-475.
  6. ^ Johnson, Norman W.英語Norman Johnson (mathematician), Convex polyhedra with regular faces, Canadian Journal of Mathematics英語Canadian Journal of Mathematics, 1966, 18: 169–200, MR 0185507, Zbl 0132.14603, doi:10.4153/cjm-1966-021-8 .
  7. ^ 黃鈺閔; 楊元蓁; 林鳳美, 構成均勻凸多面體的條件式及幾何性質之探討 (PDF), 成淵高中小論文, [2021-08-02], (原始內容存檔 (PDF)於2021-08-02) 
  8. ^ Weisstein, Eric W. (編). Elongated Pentagonal Pyramid. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  9. ^ Weisstein, Eric W. (編). Biaugmented triangular prism. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  10. ^ Weisstein, Eric W. (編). Augmented pentagonal prism. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  11. ^ David I. McCooey. Simplest Canonical Polyhedron with D9h Symmetry: Enneagonal Prism. [2022-09-14]. (原始內容存檔於2016-08-07). 
  12. ^ David I. McCooey. Simplest Canonical Polyhedron with D9h Symmetry: Enneagonal Dipyramid. [2022-09-14]. (原始內容存檔於2022-09-14). 
  13. ^ Wolfram, Stephen. "enneagon prism". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英語). 
  14. ^ David I. McCooey. Simplest Canonical Polyhedron with C10v Symmetry: Decagonal Pyramid. [2022-09-14]. (原始內容存檔於2022-09-14). 
  15. ^ 15.0 15.1 Wolfram, Stephen. "decagon pyramid". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英語). 
  16. ^ Holleman, Arnold Frederik; Wiberg, Egon, Wiberg, Nils , 編, Inorganic Chemistry, 由Eagleson, Mary; Brewer, William翻譯, San Diego/Berlin: Academic Press/De Gruyter: 1165, 2001, ISBN 0-12-352651-5 
  17. ^ Space-Filling Bisymmetric Hendecahedron. [2013-04-11]. (原始內容存檔於2013-03-28). 
  18. ^ Anderson, Ian. "Constructing Tournament Designs." The Mathematical Gazette 73, no. 466 (December 1989): 284-292.
  19. ^ 19.0 19.1 A Self-Dual Hendecahedron頁面存檔備份,存於網際網路檔案館) steelpillow.com [2013-4-12]
  20. ^ Five space-filling polyhedra頁面存檔備份,存於網際網路檔案館) steelpillow.com [2013-4-12]