在数学 中,双曲函数 是一类与常见的三角函数 (也叫圆函数)类似的函数。最基本的双曲函数是雙曲正弦 函数
sinh
{\displaystyle \sinh }
和雙曲餘弦 函数
cosh
{\displaystyle \cosh }
,从它们可以导出双曲正切 函数
tanh
{\displaystyle \tanh }
等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数 。
射線出原點交單位雙曲線
x
2
−
y
2
=
1
{\displaystyle x^{2}-y^{2}=1}
於點
(
cosh
a
,
sinh
a
)
{\displaystyle (\cosh a,\sinh a)}
,這裡的
a
{\displaystyle a}
是射線、雙曲線和x軸圍成的面積的二倍。對於雙曲線上位於x軸下方的點,這個面積被認為是負值
双曲函数的定义域是实数,其自变量的值叫做双曲角 。双曲函数出现于某些重要的线性微分方程 的解中,譬如說定义悬链线 和拉普拉斯方程 。
在
直角雙曲線 (方程
y
=
1
x
{\displaystyle y={1 \over x}}
)下,雙曲線三角形(黃色),和對應於
雙曲角 u 的
雙曲線扇形 (紅色)。這個三角形的邊分別是
雙曲函數 中
cosh
{\displaystyle \cosh }
和
sinh
{\displaystyle \sinh }
的
2
{\displaystyle {\sqrt {2}}}
倍。
在18世紀,約翰·海因里希·蘭伯特 引入雙曲函數[2] ,並計算了雙曲幾何 中雙曲三角形 的面積[3] 。自然對數 函數是在直角雙曲線
x
y
=
1
{\displaystyle xy=1}
下定義的,可構造雙曲線直角三角形,底邊在線
y
=
x
{\displaystyle y=x}
上,一個頂點是原點,另一個頂點在雙曲線。這裡以自然對數 即雙曲角作為參數的函數,是自然對數的逆函數指數函數 ,即要形成指定雙曲角
u
{\displaystyle u}
,在漸近線即x或y軸上需要有的
x
{\displaystyle x}
或
y
{\displaystyle y}
的值。顯見這裡的底邊是
(
e
u
+
e
−
u
)
2
2
{\displaystyle \left(e^{u}+e^{-u}\right){\frac {\sqrt {2}}{2}}}
,垂線是
(
e
u
−
e
−
u
)
2
2
{\displaystyle \left(e^{u}-e^{-u}\right){\frac {\sqrt {2}}{2}}}
。
通過旋轉和縮小線性變換 ,得到單位雙曲線 下的情況,有:
cosh
u
=
e
u
+
e
−
u
2
{\displaystyle \cosh u={\frac {e^{u}+e^{-u}}{2}}}
sinh
u
=
e
u
−
e
−
u
2
{\displaystyle \sinh u={\frac {e^{u}-e^{-u}}{2}}}
單位雙曲線 中雙曲線扇形的面積是對應直角雙曲線
x
y
=
1
{\displaystyle xy=1}
下雙曲角的
1
2
{\displaystyle {1 \over 2}}
。
虛數圓角定義 编辑
與三角函數的類比 编辑
双曲函数的導數 编辑
d
d
x
sinh
x
=
cosh
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sinh x=\cosh x\,}
d
d
x
cosh
x
=
sinh
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cosh x=\sinh x\,}
d
d
x
tanh
x
=
1
−
tanh
2
x
=
sech
2
x
=
1
cosh
2
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\tanh x=1-\tanh ^{2}x={\hbox{sech}}^{2}x={\frac {1}{\cosh ^{2}x}}\,}
双曲函数的泰勒展開式 编辑
雙曲函數也可以以泰勒級數 展開:
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}
tanh
x
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
|
x
|
<
π
2
{\displaystyle \tanh x=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}
coth
x
=
1
x
+
x
3
−
x
3
45
+
2
x
5
945
+
⋯
=
1
x
+
∑
n
=
1
∞
2
2
n
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle \coth x={\frac {1}{x}}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi }
(罗朗级数 )
sech
x
=
1
−
x
2
2
+
5
x
4
24
−
61
x
6
720
+
⋯
=
∑
n
=
0
∞
E
2
n
x
2
n
(
2
n
)
!
,
|
x
|
<
π
2
{\displaystyle \operatorname {sech} \,x=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}
csch
x
=
1
x
−
x
6
+
7
x
3
360
−
31
x
5
15120
+
⋯
=
1
x
+
∑
n
=
1
∞
2
(
1
−
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
,
0
<
|
x
|
<
π
{\displaystyle \operatorname {csch} \,x={\frac {1}{x}}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi }
(罗朗级数 )其中
B
n
{\displaystyle B_{n}}
是第
n
{\displaystyle n}
項伯努利數
E
n
{\displaystyle E_{n}}
是第
n
{\displaystyle n}
項欧拉數
双曲函数的积分 编辑
∫
sinh
c
x
d
x
=
1
c
cosh
c
x
+
C
{\displaystyle \int \sinh cx\,\mathrm {d} x={\frac {1}{c}}\cosh cx+C}
∫
cosh
c
x
d
x
=
1
c
sinh
c
x
+
C
{\displaystyle \int \cosh cx\,\mathrm {d} x={\frac {1}{c}}\sinh cx+C}
∫
tanh
c
x
d
x
=
1
c
ln
(
cosh
c
x
)
+
C
{\displaystyle \int \tanh cx\,\mathrm {d} x={\frac {1}{c}}\ln(\cosh cx)+C}
∫
coth
c
x
d
x
=
1
c
ln
|
sinh
c
x
|
+
C
{\displaystyle \int \coth cx\,\mathrm {d} x={\frac {1}{c}}\ln \left|\sinh cx\right|+C}
∫
sech
c
x
d
x
=
1
c
arctan
(
sinh
c
x
)
+
C
{\displaystyle \int \operatorname {sech} cx\,\mathrm {d} x={\frac {1}{c}}\arctan(\sinh cx)+C}
∫
csch
c
x
d
x
=
1
c
ln
|
tanh
c
x
2
|
+
C
{\displaystyle \int \operatorname {csch} cx\,\mathrm {d} x={\frac {1}{c}}\ln \left|\tanh {\frac {cx}{2}}\right|+C}
與指數函數的關係 编辑
從雙曲正弦和餘弦的定義,可以得出如下恆等式:
e
x
=
cosh
x
+
sinh
x
{\displaystyle e^{x}=\cosh x+\sinh x}
和
e
−
x
=
cosh
x
−
sinh
x
{\displaystyle e^{-x}=\cosh x-\sinh x}
複數的雙曲函數 编辑
反双曲函数 编辑
反双曲函数 是双曲函数的反函数 。它们的定义为:
arsinh
(
x
)
=
ln
(
x
+
x
2
+
1
)
arcosh
(
x
)
=
ln
(
x
+
x
2
−
1
)
;
x
≥
1
artanh
(
x
)
=
1
2
ln
(
1
+
x
1
−
x
)
;
|
x
|
<
1
arcoth
(
x
)
=
1
2
ln
(
x
+
1
x
−
1
)
;
|
x
|
>
1
arsech
(
x
)
=
ln
(
1
x
+
1
−
x
2
x
)
;
0
<
x
≤
1
arcsch
(
x
)
=
ln
(
1
x
+
1
+
x
2
|
x
|
)
;
x
≠
0
{\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right);\left|x\right|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right);\left|x\right|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1-x^{2}}}{x}}\right);0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right);x\neq 0\end{aligned}}}
^ 1.0 1.1 1.2 Weisstein, Eric W. (编). Hyperbolic Functions . at MathWorld --A Wolfram Web Resource. Wolfram Research, Inc. [2020-08-29 ] . (原始内容 存档于2022-05-21) (英语) .
^ Eves, Howard, Foundations and Fundamental Concepts of Mathematics , Courier Dover Publications: 59, 2012, ISBN 9780486132204 , We also owe to Lambert the first systematic development of the theory of hyperbolic functions and, indeed, our present notation for these functions.
^ Ratcliffe, John, Foundations of Hyperbolic Manifolds , Graduate Texts in Mathematics 149 , Springer: 99, 2006 [2014-03-27 ] , ISBN 9780387331973 , (原始内容存档 于2014-01-12), That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien , which was published posthumously in 1786.
^ Augustus De Morgan (1849) Trigonometry and Double Algebra (页面存档备份 ,存于互联网档案馆 ), Chapter VI: "On the connection of common and hyperbolic trigonometry"
^ G. Osborn, Mnemonic for hyperbolic formulae [失效連結 ] , The Mathematical Gazette, p. 189, volume 2, issue 34, July 1902