雙五角錐

(重定向自双五角锥
雙五角錐
雙五角錐
(點選檢視旋轉模型)
類別 雙角錐
Johnson多面體
J12 - J13 - J14
10
15
頂點 7
歐拉特徵數 F=10, E=15, V=7 (χ=2)
面的種類 三角形
頂點圖 V4.4.5
考克斯特符號英语Coxeter-Dynkin diagram CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png
對稱群 D5h, [5,2], (*225), order 20
對偶 五角柱
旋轉對稱群英语Point_groups_in_three_dimensions#Rotation_groups D5, [5,2]+, (225), order 10
特性 face-transitive、(deltahedron)
立體圖
Dual pentagonal dipyramid.png
五角柱
(對偶多面體)
Johnson solid 13 net.png
(展開圖)

幾何學中,雙五角錐是指以五邊形做為的雙錐體,其為五角柱的對偶。所有雙五角錐都有10個,15個和7個頂點[1]。所有雙五角錐都是十面體。若一個雙五角錐的基底為正五邊形則可稱為雙正五角錐或正五角雙錐,若其每個面都是正多邊形且以正五邊形為基底,則為92種詹森多面體J13)中的其中一個,也是雙角錐的其中一種。顧名思義,它可由詹森多面體中兩個大小相同的正五角錐以正五邊形面接合而成。這92種詹森多面體最早在1996年由詹森·諾曼英语Norman Johnson (mathematician)(Norman Johnson)命名並給予描述。

正五角雙錐是由10個頂角40.42°、底角 69.79°、邊常比等腰三角形所構成。

若不考慮每個面皆為正五邊形,只考慮基底為正五邊形時,則有可能為廣義的半正多面體的對偶,正五角柱的對偶,此時能使用施萊夫例符號表示,計為{ } + {5},而在考克斯特符號中,則可以用CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png或表示。

對偶多面體编辑

雙五角錐的對偶多面體是五角柱,但詹森多面體雙五角錐的對偶多面體不是一個正五角柱,是一種七面體由五個矩形和二個五邊形組成。

雙五角錐的對偶 對偶的展開圖
   

相關多面體與鑲嵌编辑

雙五角錐可以由五角形二面體透過五角化變換構造而來,因此與五角形二面體具有相同的對稱性,其可以衍生出一些相關的多面體:

半正五邊形二面體球面多面體
對稱群英语List of spherical symmetry groups[5,2], (*522) [5,2]+, (622)
                                               
           
{5,2} t{5,2} r{5,2} 2t{5,2}=t{2,5} 2r{5,2}={2,5} rr{5,2} tr{5,2} sr{5,2}
半正對偶
                                               
               
V52 V102 V52 V4.4.5 V25 V4.4.5 V4.4.10 V3.3.3.5
半正对偶双棱锥
2 3 4 5 6 7 8 9 10 11 12 ...
                                                                          
                   
作为球面镶嵌
                     


參見编辑

參考文獻编辑

  1. ^ Pugh, Anthony, Polyhedra: A Visual Approach, University of California Press: 21, 27, 62, 1976, ISBN 9780520030565 .