打开主菜单

定义编辑

实数矩阵AQR分解是把A分解为

 

这里的Q正交矩阵(意味着QTQ = I)而R是上三角矩阵。类似的,我们可以定义A的QL, RQ和LQ分解。

更一般的说,我们可以因数分解复数 × 矩阵(有着mn)为 ×  幺正矩阵(在QQ = I的意义上)和 × 上三角矩阵的乘积。

如果A非奇异的,且限定R 的对角线元素为正,则这个因数分解是唯一的。

QR分解的求法编辑

QR分解的实际计算有很多方法,例如Givens旋转Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

使用Householder变换编辑

Householder变换将一个向量关于某个平面或者超平面进行反射。我们可以利用这个操作对 的矩阵 进行QR分解。

矩阵 可以被用于对一个向量以一种特定的方式进行反射变换,使得它除了一个维度以外的其他所有分量都化为0。

 为矩阵 的任一m维实列向量,且有 (其中 为标量)。若该算法是通过浮点数实现的,则 应当取和 的第 维相反的符号(其中 是要保留不为0的项),这样做可以避免精度缺失。对于复数的情况,令

 

Stoer & Bulirsch 2002,p.225),并且在接下来矩阵 的构造中要将矩阵转置替换为共轭转置。

接下来,设 为单位向量 ,||·||为欧几里的范数  单位矩阵,令

 
 
 

或者,若 为复矩阵,则

 ,其中 
式中  共轭转置(亦称埃尔米特共轭埃尔米特转置)。

 为一个 的Householder矩阵,它满足

 

利用Householder矩阵,可以将一个 的矩阵 变换为上三角矩阵。 首先,我们将A左乘通过选取矩阵的第一行得到行向量 的Householder矩阵 。这样,我们得到的矩阵 的第一列将全部为0(第一行除外):

 

这个过程对于矩阵 (即 排除第一行和第一列之后剩下的方阵)还可以继续做下去,从而得到另一个Householder矩阵 。注意到 其实比 要小,因为它是在 而非 的基础上得到的。因此,我们需要在 的左上角补上1,或者,更一般地来说:

 

将这个迭代过程进行 次之后( ),将有

 

其中R为一个上三角矩阵。因此,令

 

 为矩阵 的一个QR分解。

相比与Gram-Schmidt正交化,使用Householder变换具有更好的数值稳定性

Matlab编辑

MATLAB以qr函数来执行QR分解法,其语法为

[Q,R]=qr(A)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为m*n,则矩阵Q大小为m*m,矩阵R大小为m*n。