線性代數中,么正矩陣(又译作幺正矩阵,英語:unitary matrix)是一個 n×n 複數方塊矩陣 U,其滿足以下性質:

线性代数

向量 · 向量空间  · 行列式  · 矩阵

其中 U*U共軛轉置Inn×n 單位矩陣

換句話說,么正矩陣的逆矩陣,就是其共軛轉置:

么正矩陣是實數上的正交矩陣,在複數的推廣。

例子编辑

以下是一個么正矩陣的例子:

 

驗正如下:

 
 

性質编辑

從定義可知,么正矩陣滿足以下性質:

 

由此可見,么正矩陣與其共軛轉置 U* 矩陣乘法可交換,是正規矩陣

么正矩陣亦必定可逆,且逆矩陣等於其共軛轉置:

 


么正矩陣 U 的所有特徵值 λn ,其絕對值都是等於 1 的複數:

 

因此,么正矩陣 U 行列式的絕對值也是 1

 


么正矩陣 U 不會改變兩個複向量 xy點積

 

更一般地說,所有希爾伯特內積也不會改變:

 


UV 都是么正矩陣,且 UV 也是么正矩陣:

 


Un×n 矩陣,則下列條件等價:

  1. U 是么正矩阵
  2. U*是么正矩阵
  3. U列向量是在 Cn 上的一组标准正交基
  4. U行向量是在 Cn 上的一组标准正交基


給定任意的 n ,所有 n 階么正矩阵的集合 G 與矩陣乘法「」,都能構成一個 (G, ⋅ )

么正對角化编辑

么正對角化(又译作幺正對角化,英語:unitary diagonalisation),指把一個矩陣 A 對角化成以下形式:

 

其中 U 是么正矩陣,D對角矩陣

根據譜定理,一個矩陣 A 可么正對角化,當且僅當 A正規矩陣,即它與其共軛轉置 A* 矩陣乘法可交換(A*A = AA*)。


由於么正矩陣本身也是一個正規矩陣,因此么正矩陣 U 也可么正對角化:

 

其中 V 是么正矩陣,Σ 是對角矩陣。

参见编辑

參考資料编辑