# 扭棱立方体

(按這裡觀看旋轉模型)

38
60

(8+24){3}+6{4}

3.3.3.3.4

(對偶多面體)

(展開圖)

## 性質

### 體積與表面積

${\displaystyle {\sqrt {\frac {613t+203}{9(35t-62)}}}\approx 7.889\,294\,677\,71,}$

${\displaystyle {\tfrac {1+{\sqrt[{3}]{19+3{\sqrt {33}}}}+{\sqrt[{3}]{19-3{\sqrt {33}}}}}{3}}\approx 1.839\,29}$

### 二面角

${\displaystyle 2\sec ^{-1}({\sqrt {12R^{2}-3}})\approx 2.674448083}$

${\displaystyle \sec ^{-1}({\sqrt {12R^{3}-3}})+\sec ^{-1}({\sqrt {4R^{2}-1}})\approx 2.495531630}$

## 球面鑲嵌

 以正方形為中心

## 幾何關聯

 扭棱立方體 立方體 小斜方截半立方體 扭棱立方體

## 相關多面體及鑲嵌

: [4,3], [4,3]+
(432)
[1+,4,3] = [3,3]
[3+,4]
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} c{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}

=

=

=
=
or
=
or
=

V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V4.62/63 V34.4 V33 V3.62 V35

## 參考文獻

1. ^ Wenninger, M. J. "The Snub Cube." Model 17 in Polyhedron Models. Cambridge, England: Cambridge University Press, p. 31, 1989.
2. ^ Kepler, J. Harmonices Mundi. 1619. Reprinted Opera Omnia, Lib. II. Frankfurt, Germany. ASIN B0000DN8M2
3. ^ Weissbach, B. and Martini, H. "On the Chiral Archimedean Solids." Contrib. Algebra and Geometry 43, 121-133, 2002.
4. ^ Geometry Technologies. "Snub Cube.". scienceu.com. 1999-07-28. （原始内容存档于2000-03-08）.
5. ^
6. ^ The Snub Cube. eusebeia. 2016-09-09 [2016-08-22]. （原始内容存档于2012-03-16）.
7. ^ Coxeter, H. S. M., Kaleidoscopes: Selected Writings, John Wiley and Sons: 282, 1995, ISBN 9780471010036.
8. ^ Archimedean Solids: Snub Cube (laevo). dmccooey.com. （原始内容存档于2016-03-24）.
9. ^ Archimedean Solids: Snub Cube (dextro). dmccooey.com. （原始内容存档于2016-03-24）.
10. ^ Cundy, H. and Rollett, A. "Snub Cube. 3^4.4." §3.7.7 in Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., p. 107, 1989. ISBN 978-0906212202