打开主菜单
循環小數
1
7
=0.142857142857…
各种各样的
基本

NumberSetinC.svg

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元數
八元數
十六元數
超實數
大實數
上超實數

雙曲複數
雙複數
複四元數
共四元數英语Dual quaternion
超复数
超數
超現實數

其他

質數
可計算數
基數
阿列夫數
同餘
整數數列
公稱值

規矩數
可定義數
序数
超限数
p進數
數學常數

圓周率
自然對數的底
虛數單位
無窮大

循环小数,是從小數部分的某一位起,一個數字或幾個數字,依次不斷地重複出現的小數。可分为有限循环小数和无限循环小数。

定義编辑

循環小數都為有理數小數表示形式,例:

 

 

 

性质编辑

  • 一个分母为N的循环小数的循环节位数最多不超过N-1位。
  • 根據分數 的情況分開討論
1.除数a为 的倍數时, 有max(m,n)个不循环位数,其中 為任意自然數, 為非 之其他數。
2.如果 ,a不是2或5的倍数,並且a與b互質,那麼存在一個正整數e,e為 的循環節位數,而e= [1]
 表示 可以整除a,或稱 與1同餘)
事實上以該參考文獻的定理一公式推導式子: 來看, 也成立,例如  ,兩者循環小數一致,因為 ,只差別在商,餘數皆為1(同餘)故成立。
3.承接以上兩點,當除数a可以質因數標準分解式表示成  時,會有max(m,n)個不循環位數,和 個循環節位數。
其中, ,  ,⋯, 分別各有e1,e2,...,en個循環節位數,存在一個最小公倍數 e1,e2,...,en 
例: 的循環節個數?
答:前三位不循環(2 和 5 的最高次方為 3),循環節個數是 48(因為 的循環節位數為1,7的循環節位數為6,17的循環節位數為16,[1,6,16]=48)[2]

化為分數的方法编辑

  1. 先看有幾位「非循環節位數( )」和「循環節位數( )」,算出後,將 擺於「分母」。
  2. 分子」則是將「非循環節部分」和「循環節部分」併為一個數字,將其減去「非循環節部分」,即 ,詳細公式如下。
  3. 公式: 
  4. 原理:
    1.  
    2.  ──①式。
    3.  ──②式。
    4. ②-①⇒ 
    5.  
  5. 範例: 
    1.  
    2.   
    3. 兩式相減得  
    4.  

计算方法编辑

利用短除法可以将分数(有理数 )转化为循环小数。

例如 可以用短除法计算如下:

7|3.00000000000000000
  0.42857142857142857...

表示方法编辑

在不同的国家地区对循环小数有不同的表示习惯。

  • 使用「上划线」表示,如:

 

  • 使用「上点」表示,如:

 

  • 使用「大括号」表示,如:

 

缺点编辑

不唯一性编辑

使用循环小数表示有理数的缺点在于表示方式的不唯一性,例如 

進位制系統密切相关编辑

由于循环小数与進位制系統密切相关,使得一些简单的有理数在循环小数表示法中的表示形式相当复杂。如 

但在某些进位制当中反而因为循环节较短,使得看起来相当简单。如 

参考资料编辑

  1. ^ 康明昌. 循環小數 (PDF). 數學傳播. 2001年9月, 25 (3) [2014-12-28]. 
  2. ^ 質數循環節的位數 (PDF). 

參見编辑

外部連結编辑